1
|
Liu Y, Wang Y, Deng Q. Radial Inertia Effect of Ultra-Soft Materials from Hopkinson Bar and Solution Methodologies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3793. [PMID: 39124457 PMCID: PMC11313564 DOI: 10.3390/ma17153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The split-Hopkinson pressure bar technique is widely used to determine the dynamic mechanical behavior of materials. However, spike-like stress features appear in the initial stress behavior of ultra-soft materials tested with a split-Hopkinson bar. These features are not intrinsic characteristics of the materials. Potential causes were investigated through experiments and numerical simulations. It was found that the spike feature represents derived stress resulting from the radial inertia effect during dynamic loading. In this work, we propose and experimentally verify effective methods to reduce this effect. The influences of density, strain acceleration, ratio between inner and outer diameter, and Poisson's ratio on the radial inertia effect were investigated. The spike stress was found to change linearly with density and strain acceleration but decrease significantly when the inner/outer diameter ratio was below 0.3, after which it remained nearly constant. A parabolic stress distribution was observed along the radial direction due to the Poisson effect, especially when the ratio exceeded 0.3, leading to higher spike stress. Finally, suggestions were proposed as experimental guidance when testing ultra-soft materials.
Collapse
Affiliation(s)
- Yue Liu
- Joint International Research Laboratory of Impact Dynamics and Its Engineering Applications, School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
- Shaanxi Key Laboratory of Impact Dynamics and Its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongshuai Wang
- Joint International Research Laboratory of Impact Dynamics and Its Engineering Applications, School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
- Shaanxi Key Laboratory of Impact Dynamics and Its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiong Deng
- Joint International Research Laboratory of Impact Dynamics and Its Engineering Applications, School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
- Shaanxi Key Laboratory of Impact Dynamics and Its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
2
|
Shokry A. Modified Fields-Backofen and Zerilli-Armstrong constitutive models to predict the hot deformation behavior in titanium-based alloys. Sci Rep 2024; 14:8359. [PMID: 38600255 PMCID: PMC11006685 DOI: 10.1038/s41598-024-58568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
This work presents modifications for two constitutive models for the prediction of the flow behavior of titanium-based alloys during hot deformation. The modified models are the phenomenological-based Fields-Backofen and the physical-based Zerilli-Armstrong. The modifications are derived and suggested by studying the hot deformation of titanium-based alloy Ti55531. The predictability of the modified models along with the original Fields-Backofen and another modified Zerilli-Armstong models is assessed and evaluated using the well-known statistical parameters correlation coefficient (R), Average Absolute Relative Error (AARE), and Root Mean Square Error (RMSE), for the Ti55531 alloy, and validated with other two different titanium-based alloys SP700 and TC4. The results show that the modified Fields-Backofen gives the best performance with R value of 0.996, AARE value of 3.34%, and RMSE value of 5.64 MPa, and the improved version of the modified Zerilli-Armstrong model comes in the second-best place with R value of 0.992, AARE value of 3.52%, and RMSE value of 9.15 MPa for the Ti55531 alloy.
Collapse
Affiliation(s)
- Abdallah Shokry
- Department of Mechanical Engineering, Faculty of Engineering, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
3
|
He J, Jia W, Lin Z, Zhang Y, Zhao Y, Fang Y. Improving the quality and processing efficiency of beef jerky via drying in confined conditions of pre-stretching. Food Res Int 2023; 172:113171. [PMID: 37689924 DOI: 10.1016/j.foodres.2023.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/16/2023] [Accepted: 06/17/2023] [Indexed: 09/11/2023]
Abstract
Inspired by the mechanical enhancement of hydrogel via drying in confined conditions, we applied this strategy to beef jerky manufacture for improving the quality and processing efficiency. In our study, beef strips were pre-stretched and then dried in a tensile state, and the confined conditions were achieved by controlling the stretched strains from 20% to 120%. Compared with the sample dried freely, beef jerky dried in confined conditions of different pre-stretching strains exhibited improved quality based on texture and sensory analysis. Additionally, this method also enhanced processing efficiency by reducing approximately 50% drying time. The excellent sensory quality and good texture of beef jerky were obtained as the pre-stretching strain was 80%. Drying beef strips in confined conditions made muscle fibers tense and enhanced hydrophobicity of myofibrillar proteins, leading to a compact structure with high shear force and anisotropy, and rapid water loss in beef jerky. This facile and green method provides a promising route to enrich the existing technologies of jerky processing.
Collapse
Affiliation(s)
- Jun He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenzhe Jia
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Tran DT, Tsai L. Effect of strain rates on the mechanical response of whole muscle bundle. J Biol Phys 2023; 49:257-267. [PMID: 37009944 PMCID: PMC10160262 DOI: 10.1007/s10867-023-09630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/04/2023] [Indexed: 04/04/2023] Open
Abstract
Muscle injuries frequently happen during sports activities and exercise, which could have serious consequences if not diagnosed and treated promptly. This research aims to investigate the quasi-static and dynamic responses of over 30 fresh frog semitendinosus muscles utilizing Split Hopkinson Pressure Bars (SHPB) and a material testing system under strain rates between 0.001 ~ 200 s-1. To accommodate the special shape of muscle-tendon-bone samples, PLA clampers were produced by the 3D printer to properly hold and prevent slipping during the testing process. The mechanical characteristics of the whole muscle bundle, including Young's modulus and stress-strain curve, are illustrated at various strain rates. The findings showed that the muscle properties were sensitive to strain rate when under passive deformation. Both maximum stress and Young's modulus increased with the rise of strain rate, and modulus at 200 s-1 can be as high as 10 times compared with quasi-static conditions.
Collapse
Affiliation(s)
- Dat Trong Tran
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, No. 415 Sanmin District, 807618, Jiangong, Kaohsiung City, Taiwan
- School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Liren Tsai
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, No. 415 Sanmin District, 807618, Jiangong, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Quasi-Static Mechanical Properties and Continuum Constitutive Model of the Thyroid Gland. J Funct Biomater 2022; 13:jfb13040283. [PMID: 36547544 PMCID: PMC9783632 DOI: 10.3390/jfb13040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to obtain the digital twin parameters of the thyroid gland and to build a constitutional model of the thyroid gland based on continuum mechanics, which will lay the foundation for the establishment of a surgical training system for the thyroid surgery robot and the development of the digital twin of the thyroid gland. First, thyroid parenchyma was obtained from fresh porcine thyroid tissue and subjected to quasi-static unconfined uniaxial compression tests using a biomechanical test platform with two strain rates (0.005 s-1 and 0.05 s-1) and two loading orientations (perpendicular to the thyroid surface and parallel to the thyroid surface). Based on this, a tensile thyroid model was established to simulate the stretching process by using the finite element method. The thyroid stretching test was carried out under the same parameters to verify the validity of the hyperelastic constitutive model. The quasi-static mechanical property parameters of the thyroid tissue were obtained by a quasi-static unconstrained uniaxial compression test, and a constitutional model that can describe the quasi-static mechanical properties of thyroid tissue was proposed based on the principle of continuum media mechanics, which is of great value for the establishment of a surgical training system for the head and neck surgery robot and for the development of the thyroid digital twin.
Collapse
|
6
|
Leichter DM, Stark NE, Leary OP, Brodsky MB, Gilbert RJ, Nicosia MA. Two dimensional computational model coupling myoarchitecture-based lingual tissue mechanics with liquid bolus flow during oropharyngeal swallowing. Comput Biol Med 2022; 145:105446. [PMID: 35390748 DOI: 10.1016/j.compbiomed.2022.105446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Biomechanical relationships involving lingual myoanatomy, contractility, and bolus movement are fundamental properties of human swallowing. To portray the relationship between lingual deformation and bolus flow during swallowing, a weakly one-way solid-fluid finite element model (FEM) was derived employing an elemental mesh aligned to magnetic resonance diffusional tractography (Q-space MRI, QSI) of the human tongue, an arbitrary Lagrangian-Eulerian (ALE) formulation with remeshing to account for the effects of lingual surface (boundary) deformation, an implementation of patterned fiber shortening, and a computational visualization of liquid bolus flow. Representing lingual tissue deformation in terms of its 2D principal Lagrangian strain in the mid-sagittal plane, we demonstrated that the swallow sequence was characterized by initial superior-anterior expansion directed towards the hard palate, followed by sequential, radially directed, contractions of the genioglossus and verticalis to promote lingual rotation (lateral perspective) and propulsive displacement. We specifically assessed local bolus velocity as a function of viscosity (perfect slip conditions) and observed that a low viscosity bolus (5 cP) exhibited maximal displacement, surface spreading and local velocity compared to medium (110 cP, 300 cP) and high (525 cP) viscosity boluses. Analysis of local nodal velocity revealed that all bolus viscosities exhibited a bi-phasic progression, with the low viscosity bolus being the most heterogeneous and fragmented and the high viscosity bolus being the most homogenous and cohesive. Intraoral bolus cohesion was depicted in terms of the distributed velocity gradient, with higher gradients being associated with increased shear rate and bolus fragmentation. Lastly, we made a sensitivity analysis on tongue stiffness and contractility by varying the degree of extracellular matrix (ECM) stiffness through effects on the Mooney-Rivlin derived passive matrix and by varying maximum tetanized isometric stress, and observed that a graded increase of ECM stiffness was associated with reduced bolus spreading, posterior displacement, and surface velocity gradients, whereas a reduction of global contractility resulted in a graded reduction of obtainable accommodation volume, absent bolus spreading, and loss of posterior displacement. We portray a unidirectionally coupled solid-liquid FEM which associates myoarchitecture-based lingual deformation with intra-oral bolus flow, and deduce that local elevation of the velocity gradient correlates with bolus fragmentation, a precondition believed to be associated with aspiration vulnerability during oropharyngeal swallowing.
Collapse
Affiliation(s)
- Dana M Leichter
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA; Research Service, Providence VA Medical Center, Providence, RI, 02908, USA
| | - Nicole E Stark
- Department of Mechanical Engineering, Widener University, Chester, PA, 19013, USA
| | - Owen P Leary
- Research Service, Providence VA Medical Center, Providence, RI, 02908, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Martin B Brodsky
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center, Providence, RI, 02908, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Mark A Nicosia
- Department of Mechanical Engineering, Widener University, Chester, PA, 19013, USA.
| |
Collapse
|