1
|
Amjad M, Badshah S, Ahmad S, Badshah M, Jan S, Yasir M, Akram W, Alam Shah I, Muhammad R, Khan MI, Yasmeen T. Finite element modeling of stress distribution and safety factors in a Ti-27Nb alloy hip implant under real-world physiological loading scenarios. PLoS One 2024; 19:e0300270. [PMID: 39106270 DOI: 10.1371/journal.pone.0300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/25/2024] [Indexed: 08/09/2024] Open
Abstract
Total hip arthroplasty (THA) is one of the most successful orthopaedic interventions globally, with over 450,000 procedures annually in the U.S. alone. However, issues like aseptic loosening, dislocation, infection and stress shielding persist, necessitating complex, costly revision surgeries. This highlights the need for continued biomaterials innovation to enhance primary implant integrity and longevity. Implant materials play a pivotal role in determining long-term outcomes, with titanium alloys being the prominent choice. However, emerging evidence indicates scope for optimized materials. The nickel-free β titanium alloy Ti-27Nb shows promise with excellent biocompatibility and mechanical properties. Using finite element analysis (FEA), this study investigated the biomechanical performance and safety factors of a hip bone implant made of nickel-free titanium alloy (Ti-27Nb) under actual loading during routine day life activities for different body weights. The FEA modelled physiological loads during walking, jogging, stair ascent/descent, knee bend, standing up, sitting down and cycling for 75 kg and 100 kg body weights. Comparative analyses were conducted between untreated versus 816-hour simulated body fluid (SBF) treated implant conditions to determine in vivo degradation effects. The FEA predicted elevated von Mises stresses in the implant neck for all activities, especially stair climbing, due to its smaller cross-section. Stresses increased substantially with a higher 100 kg body weight compared to 75 kg, implying risks for heavier patients. Safety factors were reduced by up to 58% between body weights, although remaining above the desired minimum value of 1. Negligible variations were observed between untreated and SBF-treated responses, attributed to Ti-27Nb's excellent biocorrosion resistance. This comprehensive FEA provided clinically relevant insights into the biomechanical behaviour and integrity of the Ti-27Nb hip implant under complex loading scenarios. The results can guide shape and material optimization to improve robustness against repetitive stresses over long-term use. Identifying damage accumulation and failure risks is crucial for hip implants encountering real-world variable conditions. The negligible SBF effects validate Ti-27Nb's resistance to physiological degradation. Overall, the study significantly advances understanding of Ti-27Nb's suitability for reliable, durable hip arthroplasties with low revision rates.
Collapse
Affiliation(s)
- Muhammad Amjad
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | - Saeed Badshah
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | - Mujahid Badshah
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | - Sakhi Jan
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | - Muhammad Yasir
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad, Pakistan
| | - Waseem Akram
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | - Imtiaz Alam Shah
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | - Riaz Muhammad
- Mechanical Engineering Department, College of Engineering, University of Bahrain, Zallaq, Bahrain
| | - Muhammad Imran Khan
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University (PMU), Al-Khobar, Saudi Arabia
| | - Tabassam Yasmeen
- Aerospace Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
McHendrie R, Nguyen NH, Nguyen MT, Fallahnezhad K, Vasilev K, Truong VK, Hashemi R. Development of Novel Antibacterial Ti-Nb-Ga Alloys with Low Stiffness for Medical Implant Applications. J Funct Biomater 2024; 15:167. [PMID: 38921540 PMCID: PMC11204729 DOI: 10.3390/jfb15060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
With the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with the aim of offering beneficial antibacterial properties while having a reduced stiffness level to minimise the effect of stress shielding when in contact with bone. The focus is on the microstructure, mechanical properties, antimicrobial activity, and cytocompatibility to inform the suitability of the designed alloys as biometals. Novel Ti-33Nb-xGa alloys (x = 3, 5 wt%) were produced via casting followed by homogenisation treatment, where all results were compared to the currently employed alloy Ti-6Al-4V. Optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) results depicted a single beta (β) phase microstructure in both Ga-containing alloys, where Ti-33Nb-5Ga was also dominated by dendritic alpha (α) phase grains in a β-phase matrix. EDS analysis indicated that the α-phase dendrites in Ti-33Nb-5Ga were enriched with titanium, while the β-phase was richer in niobium and gallium elements. Mechanical properties were measured using nanoindentation and microhardness methods, where the Young's modulus for Ti-33Nb-3Ga and Ti-33Nb-5Ga was found to be 75.4 ± 2.4 and 67.2 ± 1.6 GPa, respectively, a significant reduction of 37% and 44% with respect to Ti-6Al-4V. This reduction helps address the disproportionate Young's modulus between titanium implant components and cortical bone. Importantly, both alloys successfully achieved superior antimicrobial properties against Gram-negative P. aeruginosa and Gram-positive S. aureus bacteria. Antibacterial efficacy was noted at up to 90 ± 5% for the 3 wt% alloy and 95 ± 3% for the 5 wt% alloy. These findings signify a substantial enhancement of the antimicrobial performance when compared to Ti-6Al-4V which exhibited very small rates (up to 6.3 ± 1.5%). No cytotoxicity was observed in hGF cell lines over 24 h. Cell morphology and cytoskeleton distribution appeared to depict typical morphology with a prominent nucleus, elongated fibroblastic spindle-shaped morphology, and F-actin filamentous stress fibres in a well-defined structure of parallel bundles along the cellular axis. The developed alloys in this work have shown very promising results and are suggested to be further examined towards the use of orthopaedic implant components.
Collapse
Affiliation(s)
- Rhianna McHendrie
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| | - Ngoc Huu Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Manh Tuong Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Khosro Fallahnezhad
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Reza Hashemi
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| |
Collapse
|
3
|
Bologna FA, Putame G, Audenino AL, Terzini M. Understanding the role of head size and neck length in micromotion generation at the taper junction in total hip arthroplasty. Sci Rep 2024; 14:6397. [PMID: 38493233 PMCID: PMC10944531 DOI: 10.1038/s41598-024-57017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Modular hip implants allow intra-operative adjustments for patient-specific customization and targeted replacement of damaged elements without full implant extraction. However, challenges arise from relative micromotions between components, potentially leading to implant failure due to cytotoxic metal debris. In this study magnitude and directions of micromotions at the taper junction were estimated, aiming to understand the effect of variations in head size and neck length. Starting from a reference configuration adhering to the 12/14 taper standard, six additional implant configurations were generated by varying the head size and/or neck length. A musculoskeletal multibody model of a prothesized lower limb was developed to estimate hip contact force and location during a normal walking task. Following the implant assembly, the multibody-derived loads were imposed as boundary conditions in a finite element analysis to compute the taper junction micromotions as the relative slip between the contacting surfaces. Results highlighted the L-size head as the most critical configuration, indicating a 2.81 μm relative slip at the mid-stance phase. The proposed approach enables the investigation of geometric variations in implants under accurate load conditions, providing valuable insights for designing less risky prostheses and informing clinical decision-making processes.
Collapse
Affiliation(s)
- Federico A Bologna
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy
| | - Alberto L Audenino
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy
| | - Mara Terzini
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy.
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Turin, Italy.
| |
Collapse
|
4
|
McHendrie R, Xiao W, Truong VK, Hashemi R. Gallium-Containing Materials and Their Potential within New-Generation Titanium Alloys for Biomedical Applications. Biomimetics (Basel) 2023; 8:573. [PMID: 38132512 PMCID: PMC10741799 DOI: 10.3390/biomimetics8080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
With the rising demand for implantable orthopaedic medical devices and the dominance of device-associated infections, extensive research into the development of novel materials has been prompted. Among these, new-generation titanium alloys with biocompatible elements and improved stiffness levels have received much attention. Furthermore, the development of titanium-based materials that can impart antibacterial function has demonstrated promising results, where gallium has exhibited superior antimicrobial action. This has been evidenced by the addition of gallium to various biomaterials including titanium alloys. Therefore, this paper aims to review the antibacterial activity of gallium when incorporated into biomedical materials, with a focus on titanium-based alloys. First, discussion into the development of new-generation Ti alloys that possess biocompatible elements and reduced Young's moduli is presented. This includes a brief review of the influence of alloying elements, processing techniques and the resulting biocompatibilities of the materials found in the literature. The antibacterial effect of gallium added to various materials, including bioglasses, liquid metals, and bioceramics, is then reviewed and discussed. Finally, a key focus is given to the incorporation of gallium into titanium systems for which the inherent mechanical, biocompatible, and antibacterial effects are reviewed and discussed in more detail, leading to suggestions and directions for further research in this area.
Collapse
Affiliation(s)
- Rhianna McHendrie
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Wenlong Xiao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia;
| | - Reza Hashemi
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| |
Collapse
|
5
|
Soliman MM, Islam MT, Chowdhury MEH, Alqahtani A, Musharavati F, Alam T, Alshammari AS, Misran N, Soliman MS, Mahmud S, Khandakar A. Advancement in total hip implant: a comprehensive review of mechanics and performance parameters across diverse novelties. J Mater Chem B 2023; 11:10507-10537. [PMID: 37873807 DOI: 10.1039/d3tb01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar.
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Ahmed S Alshammari
- Department of Electrical Engineering, College of Engineering, University Hail, Hail 81481, Saudi Arabia.
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Norbahiah Misran
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Sakib Mahmud
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
6
|
Soliman MM, Chowdhury MEH, Islam MT, Musharavati F, Mahmud S, Hafizh M, Ayari MA, Khandakar A, Alam MK, Nezhad EZ. Design and Performance Evaluation of a Novel Spiral Head-Stem Trunnion for Hip Implants Using Finite Element Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041466. [PMID: 36837096 PMCID: PMC9962303 DOI: 10.3390/ma16041466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/27/2023]
Abstract
With an expectation of an increased number of revision surgeries and patients receiving orthopedic implants in the coming years, the focus of joint replacement research needs to be on improving the mechanical properties of implants. Head-stem trunnion fixation provides superior load support and implant stability. Fretting wear is formed at the trunnion because of the dynamic load activities of patients, and this eventually causes the total hip implant system to fail. To optimize the design, multiple experiments with various trunnion geometries have been performed by researchers to examine the wear rate and associated mechanical performance characteristics of the existing head-stem trunnion. The objective of this work is to quantify and evaluate the performance parameters of smooth and novel spiral head-stem trunnion types under dynamic loading situations. This study proposes a finite element method for estimating head-stem trunnion performance characteristics, namely contact pressure and sliding distance, for both trunnion types under walking and jogging dynamic loading conditions. The wear rate for both trunnion types was computed using the Archard wear model for a standard number of gait cycles. The experimental results indicated that the spiral trunnion with a uniform contact pressure distribution achieved more fixation than the smooth trunnion. However, the average contact pressure distribution was nearly the same for both trunnion types. The maximum and average sliding distances were both shorter for the spiral trunnion; hence, the summed sliding distance was approximately 10% shorter for spiral trunnions than that of the smooth trunnion over a complete gait cycle. Owing to a lower sliding ability, hip implants with spiral trunnions achieved more stability than those with smooth trunnions. The anticipated wear rate for spiral trunnions was 0.039 mm3, which was approximately 10% lower than the smooth trunnion wear rate of 0.048 mm3 per million loading cycles. The spiral trunnion achieved superior fixation stability with a shorter sliding distance and a lower wear rate than the smooth trunnion; therefore, the spiral trunnion can be recommended for future hip implant systems.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Sakib Mahmud
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Muhammad Hafizh
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar
| | | | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Erfan Zal Nezhad
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
7
|
Gustafson JA, Mell S, Levine BR, Pourzal R, Lundberg HJ. Interaction of surface topography and taper mismatch on head-stem modular junction contact mechanics during assembly in modern total hip replacement. J Orthop Res 2023; 41:418-425. [PMID: 35488727 PMCID: PMC9617811 DOI: 10.1002/jor.25357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Implant failure due to fretting corrosion at the head-stem modular junction is an increasing problem in modular total hip arthroplasty. The effect of varying microgroove topography on modular junction contact mechanics has not been well characterized. The aim of this study was to employ a novel, microgrooved finite element (FEA) model of the hip taper interface and assess the role of microgroove geometry and taper mismatch angle on the modular junction mechanics during assembly. A two-dimensional, axisymmetric FEA model was created using a modern 12/14 taper design of a CoCrMo femoral head taper and Ti6Al4V stem taper. Microgrooves were modeled at the contacting interface of the tapers and varied based on height and spacing measurements obtained from a repository of measured retrievals. Additionally, taper angular mismatch between the head and stem was varied to simulate proximal- and distal-locked engagement. Forty simulations were conducted to parametrically evaluate the effects of microgroove surface topography and angular mismatch on predicted contact area, contact pressure, and equivalent plastic strain. Multiple linear regression analysis was highly significant (p < 0.001; R2 > 0.74) for all outcome variables. The regression analysis identified microgroove geometry on the head taper to have the greatest influence on modular junction contact mechanics. Additionally, there was a significant second order relationship between both peak contact pressure (p < 0.001) and plastic strain (p < 0.001) with taper mismatch angle. These modeling techniques will be used to identify the implant parameters that maximize taper interference strength via large in-silico parametric studies.
Collapse
Affiliation(s)
| | - Steven Mell
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Brett R. Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Hannah J. Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
8
|
Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. An Overview of the Stability and Fretting Corrosion of Microgrooved Necks in the Taper Junction of Hip Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8396. [PMID: 36499893 PMCID: PMC9735617 DOI: 10.3390/ma15238396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Fretting corrosion at the head-neck interface of modular hip implants, scientifically termed trunnionosis/taperosis, may cause regional inflammation, metallosis, and adverse local tissue reactions. The severity of such a deleterious process depends on various design parameters. In this review, the influence of surface topography (in some cases, called microgrooves/ridges) on the overall performance of the microgrooved head-neck junctions is investigated. The methodologies together with the assumptions and simplifications, as well as the findings from both the experimental observations (retrieval and in vitro) and the numerical approaches used in previous studies, are presented and discussed. The performance of the microgrooved junctions is compared to those with a smooth surface finish in two main categories: stability and integrity; wear, corrosion, and material loss. Existing contradictions and disagreements among the reported results are reported and discussed in order to present a comprehensive picture of the microgrooved junctions. The current research needs and possible future research directions on the microgrooved junctions are also identified and presented.
Collapse
|
9
|
Deng X, Du Z, Feng H, Wang S, Luo H, Liu Y. Investigation on the Modeling and Reconstruction of Head Injury Accident Using ABAQUS/Explicit. Bioengineering (Basel) 2022; 9:723. [PMID: 36550928 PMCID: PMC9774886 DOI: 10.3390/bioengineering9120723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
A process of modeling and reconstructing human head injuries involved in traffic crashes based on ABAQUS/Explicit is presented in this paper. A high-fidelity finite element (FE) model previously developed by the authors is employed to simulate a real accident case that led to head injury. The most probable head impact position informed by CT images is used for the FE modeling and simulation since the head impact position is critical for accident reconstruction and future analysis of accidents that involve human head injuries. Critical von Mises stress on the skull surface of the head model is chosen as the evaluation criterion for the head injury and FE simulations on 60 cases with various human head-concrete ground impact conditions (impact speeds and angles) were run to obtain those stress values. The FE simulation results are compared with the CT images to determine the minimum speed that will cause skull fracture and the corresponding contact angle at that speed. Our study shows that the minimum speed that would cause skull fracture is 3.5 m/s when the contact angle between the occipital position of the injured head and the ground is about 30°. Effects of the impact speed and the contact angle on the maximum von Mises stress of the head model are revealed from the simulations. The method presented in this paper will help forensic pathologists to examine the head impact injuries and find out the real reasons that lead to those injuries.
Collapse
Affiliation(s)
- Xingqiao Deng
- College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Zhifei Du
- College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Huiling Feng
- College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Shisong Wang
- College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Heng Luo
- Hongguang Street Health Center, Pidu District, Chengdu 610097, China
| | - Yucheng Liu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57006, USA
| |
Collapse
|
10
|
Fallahnezhad K, Feyzi M, Hashemi R, Taylor M. The Role of the Assembly Force in the Tribocorrosion Behaviour of Hip Implant Head-Neck Junctions: An Adaptive Finite Element Approach. Bioengineering (Basel) 2022; 9:629. [PMID: 36354540 PMCID: PMC9687484 DOI: 10.3390/bioengineering9110629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 09/13/2023] Open
Abstract
The cyclic loading, in the corrosive medium of the human body, results in tribocorrosion at the interface of the head-neck taper junction of hip implants. The resulting metal ions and wear debris adversely affect the local tissues. The force applied by surgeons to assemble the junction has proven to play a major role in the mechanics of the taper junction which, in turn, can influence the tribocorrosion damage. Recently, finite element method has been used to predict the material loss at the head-neck interface. However, in most finite element studies, the contribution of electrochemical corrosion has been ignored. Therefore, a detailed study to investigate the influence of the assembly force on the tribocorrosive behaviour of the head-neck junction, which considers both the mechanical and chemical material removal, is of paramount interest. In this study, a finite-element-based algorithm was used to investigate the effect of assembly force on the tribocorrosion damage at the junction interface, for over four million cycles of simulated level gait. The patterns of the material removal in the modelling results were compared with the damage patterns observed in a group of retrieved modular hip implants. The results of this study showed that for different cases, chemical wear was in the range of 25-50% of the total material loss, after four million cycles. A minimum assembly force (4 kN for the studied cases) was needed to maintain the interlock in the junction. The computational model was able to predict the damage pattern at the retrieved head-neck interface.
Collapse
Affiliation(s)
- Khosro Fallahnezhad
- Medical Device Research Institute, College of Science and Engineering, Flinders University, 1284 South Road, Clovelly Park, SA 5042, Australia
| | | | | | | |
Collapse
|
11
|
A Review of Biomaterials and Associated Performance Metrics Analysis in Pre-Clinical Finite Element Model and in Implementation Stages for Total Hip Implant System. Polymers (Basel) 2022; 14:polym14204308. [PMID: 36297885 PMCID: PMC9607025 DOI: 10.3390/polym14204308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Total hip replacement (THR) is a common orthopedic surgery technique that helps thousands of individuals to live normal lives each year. A hip replacement replaces the shattered cartilage and bone with an implant. Most hip implants fail after 10–15 years. The material selection for the total hip implant systems is a major research field since it affects the mechanical and clinical performance of it. Stress shielding due to excessive contact stress, implant dislocation due to a large deformation, aseptic implant loosening due to the particle propagation of wear debris, decreased bone remodeling density due to the stress shielding, and adverse tissue responses due to material wear debris all contribute to the failure of hip implants. Recent research shows that pre-clinical computational finite element analysis (FEA) can be used to estimate four mechanical performance parameters of hip implants which are connected with distinct biomaterials: von Mises stress and deformation, micromotion, wear estimates, and implant fatigue. In vitro, in vivo, and clinical stages are utilized to determine the hip implant biocompatibility and the unfavorable local tissue reactions to different biomaterials during the implementation phase. This research summarizes and analyses the performance of the different biomaterials that are employed in total hip implant systems in the pre-clinical stage using FEA, as well as their performances in in vitro, in vivo, and in clinical studies, which will help researchers in gaining a better understanding of the prospects and challenges in this field.
Collapse
|
12
|
Diaz-Lopez R, Wen P, Shelton J. Influence of taper design and loading on taper micromotion. J Mech Behav Biomed Mater 2022; 128:105106. [DOI: 10.1016/j.jmbbm.2022.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
|