1
|
Reit M, Krug N, Zarges JC, Heim HP. Evaluation of the Activation Energy for Pyrolytic Degradation of Poly-L-Lactide (PLA) During Artificially Accelerated Aging. Biopolymers 2025; 116:e23642. [PMID: 39641416 DOI: 10.1002/bip.23642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
In the course of this study, the pyrolytic degradation characteristics of three poly(lactic acid) (PLA) types were investigated under inert conditions using dynamic thermogravimetric analysis (TGA) across the temperature range of 23°C-600°C with four heating rates. Specifically, the activation energy and its implications were determined at different stages of degradation. For this purpose, a comparative analysis of various isoconversional methods, including Kissinger, Flynn-Wall-Ozawa (FWO), Friedman, and Kissinger-Akahira-Sunnose (KAS) was undertaken to evaluate the reliability of each. The results indicate a decrease in thermal stability, indicated by a shift of the derived mass loss curves to lower temperatures, as confirmed by an increased water content and decreased crystallinity of the test specimen during aging. The study also highlights that if crystallinity and moisture content increase moderately, the thermal degradation curves remain unchanged. Additionally, kinetic analyses using mentioned models indicate a multi-step degradation process of PLA. The activation energy fluctuates with the conversion rate, suggesting complex underlying kinetics. These findings emphasize the need for dynamic adjustment of predictive models for material lifespan. The three PLA types were characterized by Differential Scanning Calorimetry (DSC), moisture absorption measurement and Gel permeation chromatography (GPC).
Collapse
Affiliation(s)
- Margarita Reit
- Institute of Material Engineering, Polymer Engineering, University of Kassel, Kassel, Germany
| | - Natalie Krug
- Institute of Material Engineering, Polymer Engineering, University of Kassel, Kassel, Germany
| | - Jan-Christoph Zarges
- Institute of Material Engineering, Polymer Engineering, University of Kassel, Kassel, Germany
| | - Hans-Peter Heim
- Institute of Material Engineering, Polymer Engineering, University of Kassel, Kassel, Germany
| |
Collapse
|
2
|
Li F, Chen C, Chen X. Tremendous advances, multifaceted challenges and feasible future prospects of biodegradable medical polymer materials. RSC Adv 2024; 14:32267-32283. [PMID: 39399258 PMCID: PMC11468490 DOI: 10.1039/d4ra00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
In recent years, biodegradable medical polymer materials (BMPMs) have stood out among many biomedical materials due to their unique advantages, such as high mechanical strength, good biocompatibility, strong corrosion resistance and excellent processability. In this review, we first provide a brief introduction of biodegradable medical materials from both natural and synthetic perspectives, and then systematically categorize BMPMs based on their applications in clinical medicine and highlight the great progress they have made in recent years. Additionally, we also point out several overlooked areas in the research of BMPMs, offering guidance for comprehensive future exploration of these materials. Finally, in view of the complex challenges faced by BMPMs today, their future directions are scientifically proposed. This work contributes to the ongoing efforts of BMPMs in the biomedical field and provides a steppingstone for developing more effective BMPM-based products for clinical applications.
Collapse
Affiliation(s)
- Fulong Li
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
| | - Chao Chen
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
| | - Xiaohong Chen
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials Shanghai 200093 China
| |
Collapse
|
3
|
Li YF, Luo QP, Yang YX, Li AQ, Zhang XC. A novel bi-layered asymmetric membrane incorporating demineralized dentin matrix accelerates tissue healing and bone regeneration in a rat skull defect model. Biomater Sci 2024; 12:4226-4241. [PMID: 38984522 DOI: 10.1039/d4bm00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Objectives: The technique of guided bone regeneration (GBR) has been widely used in the field of reconstructive dentistry to address hard tissue deficiency. The objective of this research was to manufacture a novel bi-layered asymmetric membrane that incorporates demineralized dentin matrix (DDM), a bioactive bone replacement derived from dentin, in order to achieve both soft tissue isolation and hard tissue regeneration simultaneously. Methods: DDM particles were harvested from healthy, caries-free permanent teeth. The electrospinning technique was utilized to synthesize bi-layered DDM-loaded PLGA/PLA (DPP) membranes. We analyzed the DPP bilayer membranes' surface topography, physicochemical properties and degradation ability. Rat skull critical size defects (CSDs) were constructed to investigate in vivo bone regeneration. Results: The synthesized DPP bilayer membranes possessed suitable surface characteristics, acceptable mechanical properties, good hydrophilicity, favorable apatite forming ability and suitable degradability. Micro-computed tomography (CT) showed significantly more new bone formation in the rat skull defects implanted with the DPP bilayer membranes. Histological evaluation further revealed that the bone was more mature with denser bone trabeculae. In addition, the DPP bilayer membrane significantly promoted the expression of the OCN matrix protein in vivo. Conclusions: The DPP bilayer membranes exhibited remarkable biological safety and osteogenic activity in vivo and showed potential as a prospective candidate for GBR applications in the future.
Collapse
Affiliation(s)
- Yan-Fei Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
- Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Qi-Pei Luo
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Yu-Xin Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - An-Qi Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Xin-Chun Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
4
|
Abaei AR, Shine CJ, Vaughan TJ, Ronan W. An integrated mechanical degradation model to explore the mechanical response of a bioresorbable polymeric scaffold. J Mech Behav Biomed Mater 2024; 152:106419. [PMID: 38325169 DOI: 10.1016/j.jmbbm.2024.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Simulation of bioresorbable medical devices is hindered by the limitations of current material models. Useful simulations require that both the short- and long-term response must be considered; existing models are not physically-based and provide limited insight to guide performance improvements. This study presents an integrated degradation framework which couples a physically-based degradation model, which predicts changes in both crystallinity (Xc) and molecular weight (Mn), with the results of a micromechanical model, which predicts the effective properties of the semicrystalline polymer. This degradation framework is used to simulate the deployment of a bioresorbable PLLA (Poly (L-lactide) stent into a mock vessel and the subsequent mechanical response during degradation under different diffusion boundary conditions representing neointimal growth. A workflow is established in a commercial finite element code that couples both the immediate and long-term responses. Clinically relevant lumen loss is reported and used to compare different responses and the effect of neo-intimal tissue regrowth post-implantation on degradation and on the mechanical response is assessed. In addition, the effects of possible changes in Xc, which could occur during processing and stent deployment, are explored.
Collapse
Affiliation(s)
- A R Abaei
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Ireland
| | - Connor J Shine
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Ireland
| | - T J Vaughan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Ireland
| | - W Ronan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Ireland.
| |
Collapse
|
5
|
Pereira-Lobato C, Echeverry-Rendón M, Fernández-Blázquez JP, González C, LLorca J. Mechanical properties, in vitro degradation and cytocompatibility of woven textiles manufactured from PLA/PCL commingled yarns. J Mech Behav Biomed Mater 2024; 150:106340. [PMID: 38147762 DOI: 10.1016/j.jmbbm.2023.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
The mechanical, thermal, and biological performance of fabrics manufactured with hybrid PLA/PCL commingled yarns were studied. Commingled hybrid yarns take advantage of the higher elastic modulus of PLA and the higher ductility and toughness of PCL to produce yarns and fabrics with high strength and ductility that is transferred to the woven textiles. Furthermore, PLA and PCL exhibit different degradation rates and also allow to tailor this property. Degradation of the textiles was carried out in phosphate-buffered saline solution for up to 160 days at 37 °C and 50 °C (accelerated degradation). Neither the thermal nor the mechanical properties were altered by immersion at 37 °C during 80 days and a slight degradation was observed as a result of chain scission of the PLA fibres after 160 days. However, immersion at 50 °C led to a rapid reduction in strength after 40 days due to the hydrolysis of PLA, and the fabric was highly degraded after 160 days as a result of chain scission in PCL. Finally, while indirect tests did not predict optimal biocompatibility, the direct tests provided a different perspective of the cell interaction between the textile and pre-osteoblasts regarding cell attachment and cell morphology. These results show the potential of hybrid commingled yarns to manufacture textile scaffolds of biodegradable polymers with tailored mechanical properties and good ductility for connective tissue engineering (ligaments and tendons).
Collapse
Affiliation(s)
- C Pereira-Lobato
- IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid, Spain; Materials Science and Engineering Department, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain
| | - M Echeverry-Rendón
- IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid, Spain
| | | | - C González
- IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid, E.T.S. de Ingenieros de Caminos, 28040 Madrid, Spain
| | - J LLorca
- IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid, E.T.S. de Ingenieros de Caminos, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Zhang Z, Cao B, Jiang N. The Mechanical Properties and Degradation Behavior of 3D-Printed Cellulose Nanofiber/Polylactic Acid Composites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6197. [PMID: 37763474 PMCID: PMC10532780 DOI: 10.3390/ma16186197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Polylactic acid (PLA) has been widely used in many fields because of its good biodegradability, biocompatibility, and renewability. This work studied the degradation behavior and mechanical properties of cellulose nanofiber (CNF)/PLA composites. In vitro degradation experiments of 3D-printed samples were conducted at elevated temperatures, and the degradation characteristics were evaluated by mechanical tests, gel permeation chromatography (GPC), differential scanning calorimetric (DSC), and scanning electron microscope (SEM). The results indicated that the addition of CNF (0.5 wt%) accelerated the degradation rate of PLA. The decreases in number average molecular weight (Mn) and weight average molecular weight (Mw) of composites were 7.96% and 4.91% higher than that of neat PLA, respectively. Furthermore, the tensile modulus of composites was 18.4% higher than that of neat PLA, while the strength was 7.4% lower due to poor interfacial bonding between CNF and PLA. A mapping relationship between accelerated and normal degradation showed that the degradation experienced during 60 days at 37 °C was equivalent to that undergone during 14 days at 50 °C; this was achieved by examining the alteration in Mn. Moreover, the degradation process caused a notable deformation in the samples due to residual stress generated during the 3D printing process. This study provided valuable insights for investigating the in vitro degradation behavior of 3D-printed products.
Collapse
Affiliation(s)
- Zhongsen Zhang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Bingyan Cao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Ning Jiang
- School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
7
|
Chmal-Fudali E, Basińska D, Kucharska-Jastrząbek A, Struszczyk MH, Muzalewska M, Wyleżoł M, Wątrobiński M, Andrzejewski J, Tarzyńska N, Gzyra-Jagieła K. Effect of the Advanced Cranial and Craniofacial Implant Fabrication on Their Degradation Affinity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6070. [PMID: 37687763 PMCID: PMC10488726 DOI: 10.3390/ma16176070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Biodegradable craniofacial and cranial implants are a new aspect in terms of reducing potential complications, especially in the long term after surgery. They are also an important contribution in the field of surgical reconstructions for children, for whom it is important to restore natural bone in a relatively short time, due to the continuous growth of bones. The aim of this study was to verify the impact of the technology on biodegradability and to estimate the risk of inappropriate implant resorption time, which is an important aspect necessary to select prototypes of implants for in vivo testing. Prototypes of implants were made using two technologies: 3D printing using a PLDLA: poly(L-co-D,L lactide) (PLDLA) filament containing hydroxyapatite nanoparticles, and injection using PLDLA. After the radiation sterilization process, they were subjected to in vitro degradation under accelerated conditions. As part of this study, the in vitro degradation of newly developed biodegradable implant technologies was assessed in accordance with the guidelines of European standards. It was found that the implant manufacturing process had a significant impact on the degradation time under simulated conditions in various media. Implants made using the injection technique were characterized by lower susceptibility to degradation media compared to the 3D-printed implant under accelerated conditions.
Collapse
Affiliation(s)
- Edyta Chmal-Fudali
- Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland; (E.C.-F.); (D.B.); (A.K.-J.)
| | - Daria Basińska
- Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland; (E.C.-F.); (D.B.); (A.K.-J.)
| | - Agnieszka Kucharska-Jastrząbek
- Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland; (E.C.-F.); (D.B.); (A.K.-J.)
| | - Marcin H. Struszczyk
- Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland; (E.C.-F.); (D.B.); (A.K.-J.)
| | - Małgorzata Muzalewska
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland; (M.M.); (M.W.)
| | - Marek Wyleżoł
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland; (M.M.); (M.W.)
| | | | - Jacek Andrzejewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland;
| | - Nina Tarzyńska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (N.T.); (K.G.-J.)
| | - Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (N.T.); (K.G.-J.)
| |
Collapse
|
8
|
Dai Y, Wang W, Zhou X, li L, Tang Y, Shao M, Lyu F. Biomimetic Electrospun PLLA/PPSB Nanofibrous Scaffold Combined with Human Neural Stem Cells for Spinal Cord Injury Repair. ACS APPLIED NANO MATERIALS 2023; 6:5980-5993. [DOI: 10.1021/acsanm.3c00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weizhong Wang
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200240, China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Linli li
- Department of Orthopedics, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Yuyi Tang
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200240, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Orthopedics, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
9
|
Relationship between failure strain, molecular weight, and chain extensibility in biodegradable polymers. J Mech Behav Biomed Mater 2023; 139:105663. [PMID: 36657195 DOI: 10.1016/j.jmbbm.2023.105663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Prior to degradation, biocompatible polymers exhibit ductile behaviour and yield stress offers a suitable design approach. However, as degradation proceeds the material transitions to a brittle failure mode, suggesting a more conservative design approach is necessary. Here, we predict the evolving ductility of biodegrading polymers, concentrating on the relationship between molecular weight and failure strain, εf, in poly (lactic acid). Several datasets are chosen from literature to explore the relationship, with an overview of the experimental techniques provided. Failure criteria are proposed and examined alongside these datasets: the first assumes εf is related to the finite chain extensibility of an average chain; the second introduces an exponential empirical trend; the third proposes a modified extensibility criterion (based on the first criterion) that considers the entire molecular weight distribution; and the fourth offers an alternative to the third by considering the effect of chain scissions. Combining the failure criteria with a previously introduced time-dependent kinetic scission model provides results as a function of degradation duration. The predictions obtained can offer insight into material failure, particularly at advanced stages of degradation.
Collapse
|
10
|
A hazardous boundary of Poly(L-lactic acid) braided stent design: Limited elastic deformability of polymer materials. J Mech Behav Biomed Mater 2023; 138:105628. [PMID: 36543082 DOI: 10.1016/j.jmbbm.2022.105628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Poly (L-lactic acid) (PLLA) braided stents, which are expected to replace metal stents, are promising in peripheral vascular therapy due to their superior biocompatibility. Although various design ideas have been proposed and investigated on metal stents, few researches are related to the design theory of PLLA braided stent. In this article, mechanical performance of PLLA braided stents with different parameters was systematically evaluated, and a design theory based on material properties was proposed. Different from metal materials, the risk of filament deformation beyond elastic zone should be evaluated and controlled in PLLA stent design. The findings were obtained through combination study of experiments and simulations. Design parameters, including pitch angle and stent diameter, played a crucial role in mechanical performance of PLLA braided stent. The deformation of PLLA stents with larger pitch angles and stent diameters was in elastic zone and thus presented better mechanical performance with satisfactory resilience. This work could provide meaningful suggestions for preparing bioresorbable braided stents with suitable design parameters.
Collapse
|
11
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases.
Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
12
|
Wang B, Liu M, Liu J, Tian Y, Liu W, Wu G, Cheng J, Zhang Y, Zhao G, Ni Z. Key Factors of Mechanical Strength and Toughness in Oriented Poly(l-lactic acid) Monofilaments for a Bioresorbable Self-Expanding Stent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13477-13487. [PMID: 36306177 DOI: 10.1021/acs.langmuir.2c01972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The investigation of the strength and toughness of poly(l-lactic acid) (PLLA) monofilaments is essential as the fundamental element of a biodegradable braided stent. However, the determining factor remains poorly addressed with respect to influencing the mechanical behavior of PLLA monofilaments. In this work, the electron beam (EB) with different radiation doses was utilized to sterilize PLLA monofilaments. Properties of the monofilaments, including the breaking strength, elongation at break, molecular weight, orientation, and microstructure of the fracture, were characterized. Results showed that a random chain scission of PLLA resulting from EB during this process could cause the decrease in molecular weight, which led to the decline in breaking strength. Meanwhile, the irradiated monofilaments were found to have almost the same elongation at break below a dose of 30 kGy and declined by 71.41% up to a dose of 48 kGy. It was also found that the ductile fracture connection of the monofilament translated to the brittle fracture by comparing the microstructure without and with sterilization. These phenomena could originate from the destruction of the long molecular chains connecting the crystal plates into shorter ones by radiation. PLLA monofilaments with 0, 30, and 48 kGy were used to braid carotid stents. Compared with a carotid Wallstent, the PLLA stent can better provide radial supporting to the carotid lesion. This study provides preliminary experimental references to evaluate and predict the mechanical performance of PLLA braided stents.
Collapse
Affiliation(s)
- Bin Wang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Muqing Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Jinbo Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Wentao Liu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Yi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing210044, China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| |
Collapse
|
13
|
Cheng J, Su J, Tian Y, Hu X, Zhao G, Ni Z. Experimental investigation on the properties of poly (L‐lactic acid) vascular stent after accelerated in vitro degradation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Cheng
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Junjie Su
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Yuan Tian
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Xue Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Gutian Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical Instruments Southeast University Nanjing China
| |
Collapse
|
14
|
Hybrid biodegradable electrospun scaffolds based on poly(l-lactic acid) and reduced graphene oxide with improved piezoelectric response. Polym J 2022. [DOI: 10.1038/s41428-022-00669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Biodegradable PTX-PLGA-coated magnesium stent for benign esophageal stricture: An experimental study. Acta Biomater 2022; 146:495-505. [PMID: 35487426 DOI: 10.1016/j.actbio.2022.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/21/2023]
Abstract
Biodegradable stents can degrade step by step and thereby avoid secondary removal by endoscopic procedures in contrast to metal stents. Herein, a biodegradable composite stent, a magnesium (Mg)-based braided stent with a surface coating of poly (lactic-co-glycolic acid) (PLGA) containing paclitaxel (PTX), was designed and tested. By adding this drug-loaded polymer coating, the radial force of the stent increased from 33 Newton (N) to 83 N. PTX was continuously released as the stent degraded, and the in vitro cumulative drug release in phosphate-buffered saline for 28 days was 115 ± 13.5 μg/mL at pH = 7.4 and 176 ± 12 μg/mL at pH = 4.0. There was no statistically significant difference in the viability of fibroblasts of stent extracts with different concentration gradients (P > 0.05), while the PTX-loaded stents effectively promoted fibroblast apoptosis. In the animal experiment, the stents were able to maintain esophageal patency during the 3-week follow-up and to reduce the infiltration of inflammatory cells and the amount of fibrous tissue. These results showed that the PTX-PLGA-coated Mg stent has the potential to be a safe and effective approach for benign esophageal stricture. STATEMENT OF SIGNIFICANCE: We designed a biodegradable composite stent, having poly (lactic-co-glycolic acid) (PLGA) containing paclitaxel (PTX) coated the surface of the magnesium (Mg)-based braided stent. We evaluated in vitro and in vivo characteristics of the Mg esophageal stent having a PLGA coating plus a variable concentration of PTX in comparison with the absence of PTX PLGA coating. The PTX PLGA stents exerted higher radial force than stents without coating, degraded more quickly in an acid medium, and effectively promoted fibroblast apoptosis in vitro experiments. In a rabbit model of caustic-induced esophageal stricture, there was an increased lumen and decreased inflammation of the esophageal wall in the animals stented with PTX-PLGA versus the sham group, indicating a potential approach for benign esophageal stricture.
Collapse
|
16
|
Caronna F, Glimpel N, Paar GP, Gries T, Blaeser A, Do K, Dolan EB, Ronan W. Manufacturing, characterization, and degradation of a poly(lactic acid) warp-knitted spacer fabric scaffold as a candidate for tissue engineering applications. Biomater Sci 2022; 10:3793-3807. [PMID: 35642617 DOI: 10.1039/d1bm02027g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional bioabsorbable textiles represent a novel technology for the manufacturing of tissue engineering scaffolds. In the present study, 3D bioabsorbable poly(lactic acid) (PLA) spacer fabric scaffolds are fabricated by warp-knitting and their potential for tissue engineering is explored in vitro. Changes in physical properties and mechanical performance with different heat setting treatments are assessed. To characterize the microenvironment experienced by cells in the scaffolds, yarn properties are investigated prior to, and during, hydrolytic degradation. The differences in yarn morphology, thermal properties, infrared spectra, and mechanical properties are investigated and monitored during temperature accelerated in vitro degradation tests in phosphate buffered saline (PBS) solution at 58 °C and pH 7.4 for 55 days. Yarn and textile cytocompatibility are tested to assess the effect of materials employed, manufacturing conditions, post processing and sterilization on cell viability, together with the cytocompatibility of the textile degradation products. Results show that the heat setting process can be used to modify scaffold properties, such as thickness, porosity, pore size and stiffness within the range useful for tissue regeneration. Scaffold degradation rate in physiological conditions is estimated by comparing yarn degradation data with PLA degradation data from literature. This will potentially allow the prediction of scaffold mechanical stability in the long term and thus its suitability for the remodelling of different tissues. Mouse calvaria preosteoblast MC3T3-E1 cells attachment and proliferation are observed on the scaffold over 12 days of in vitro culture by 4',6-diamidino-2-phenylindole (DAPI) fluorescent staining and DNA quantification. The present work shows the potential of spacer fabric scaffolds as a versatile and scalable scaffold fabrication technique, having the ability to create a microenvironment with appropriate physical, mechanical, and degradation properties for 3D tissue engineering. The high control and tunability of spacer fabric properties makes it a promising candidate for the regeneration of different tissues in patient-specific applications.
Collapse
Affiliation(s)
- Flavia Caronna
- Biomechanics Research Centre (BMEC), Biomedical Engineering, NUI Galway, Ireland. .,ITA GmbH, Aachen, Germany
| | - Nikola Glimpel
- Institut für Textiltechnik of RWTH Aachen University, Germany
| | | | - Thomas Gries
- Institut für Textiltechnik of RWTH Aachen University, Germany
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Germany
| | | | - Eimear B Dolan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, NUI Galway, Ireland.
| | - William Ronan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, NUI Galway, Ireland.
| |
Collapse
|
17
|
Hasanpur E, Ghazavizadeh A, Sadeghi A, Haboussi M. In vitro corrosion study of PLA/Mg composites for cardiovascular stent applications. J Mech Behav Biomed Mater 2021; 124:104768. [PMID: 34607299 DOI: 10.1016/j.jmbbm.2021.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
The present investigation explores the impact of Mg volume fraction (VMg) as a controlling parameter of degradation rate in designing patient-specific cardiovascular stents made of PLA/Mg composites. For the purpose of this research, PLA/Mg composite plates containing 1, 3, 5, and 10% VMg are produced by melt blending and hot press molding. Characterization techniques such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) are employed to study the microstructure of PLA/Mg composites. For in vitro corrosion tests, stent prototypes and composite samples are immersed in baths of simulated body fluid (SBF). According to in vitro corrosion tests, increasing VMg increases the corrosion rate of the composites by accelerating the corrosion of the particles and the crystalline zones surrounding them. In addition, a 2% raise in the Mg content (from 1% to 3%), increases the overall Mg weight loss by more than 4 times. Composite samples and prototype stents containing more than 5% VMg exhibit cracking and brittleness after 7 days of immersion in SBF. In light of the compression tests results and also the failures and cracks observed during immersions, the upper limit of Mg content for PLA/Mg stent fabrication purposes is found to be below 3%.
Collapse
Affiliation(s)
- Ehsan Hasanpur
- School of Mechanical Engineering, College of Engineering, University of Tehran, Iran
| | - Akbar Ghazavizadeh
- Université Sorbonne Paris Nord, CNRS, UPR3407, LSPM, Sorbonne Paris Cité, avenue Jean-Baptiste Clément, 93430, Villetaneuse, France.
| | - Alireza Sadeghi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Iran
| | - Mohamed Haboussi
- Université Sorbonne Paris Nord, CNRS, UPR3407, LSPM, Sorbonne Paris Cité, avenue Jean-Baptiste Clément, 93430, Villetaneuse, France
| |
Collapse
|