1
|
Baumer V, Isaacson N, Kanakamedala S, McGee D, Kaze I, Prawel D. Comparing ceramic Fischer-Koch-S and gyroid TPMS scaffolds for potential in bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1410837. [PMID: 39193226 PMCID: PMC11347304 DOI: 10.3389/fbioe.2024.1410837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Triply Periodic Minimal Surfaces (TPMS), such as Gyroid, are widely accepted for bone tissue engineering due to their interconnected porous structures with tunable properties that enable high surface area to volume ratios, energy absorption, and relative strength. Among these topologies, the Fischer-Koch-S (FKS) has also been suggested for compact bone scaffolds, but few studies have investigated these structures beyond computer simulations. FKS scaffolds have been fabricated in metal and polymer, but to date none have been fabricated in a ceramic used in bone tissue engineering (BTE) scaffolds. This study is the first to fabricate ceramic FKS scaffolds and compare them with the more common Gyroid topology. Results showed that FKS scaffolds were 32% stronger, absorbed 49% more energy, and had only 11% lower permeability than Gyroid scaffolds when manufactured at high porosity (70%). Both FKS and Gyroid scaffolds displayed strength and permeability in the low range of trabecular long bones with high reliability (Weibull failure probability) in the normal direction. Fracture modes were further investigated to explicate the quasi-brittle failure exhibited by both scaffold topologies, exploring stress-strain relationships along with scanning electron microscopy for failure analysis. Considering the physical aspects of successful bone tissue engineering scaffolds, FKS scaffolds appear to be more promising for further study as bone regeneration scaffolds than Gyroid due to their higher compressive strength and reliability, at only a small penalty to permeability. In the context of BTE, FKS scaffolds may be better suited than Gyroids to applications where denser bone and strength is prioritized over permeability, as suggested by earlier simulation studies.
Collapse
Affiliation(s)
- Vail Baumer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Nelson Isaacson
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Shashank Kanakamedala
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Duncan McGee
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States
| | - Isabella Kaze
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - David Prawel
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Seehanam S, Khrueaduangkham S, Sinthuvanich C, Sae-Ueng U, Srimaneepong V, Promoppatum P. Evaluating the effect of pore size for 3d-printed bone scaffolds. Heliyon 2024; 10:e26005. [PMID: 38375289 PMCID: PMC10875428 DOI: 10.1016/j.heliyon.2024.e26005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The present study investigated the influence of pore size of strut-based Diamond and surface-based Gyroid structures for their suitability as medical implants. Samples were made additively from laser powder bed fusion process with a relative density of 0.3 and pore sizes ranging from 300 to 1300 μm. They were subsequently examined for their manufacturability and mechanical properties. In addition, non-Newtonian computational fluid dynamics and discrete phase models were conducted to assess pressure drop and cell seeding efficiency. The results showed that both Diamond and Gyroid had higher as-built densities with smaller pore sizes. However, Gyroid demonstrated better manufacturability as its relative density was closer to the as-designed one. In addition, based on mechanical testing, the elastic modulus was largely unaffected by pore size, but post-yielding behaviors differed, especially in Diamond. High mechanical sensitivity in Diamond could be explained partly by Finite Element simulations, which revealed stress localization in Diamond and more uniform stress distribution in Gyroid. Furthermore, we defined the product of the normalized specific surface, normalized pressure drop, and cell seeding efficiency as the indicator of an optimal pore size, in which this factor identified an optimal pore size of approximately 500 μm for both Diamond and Gyroid. Besides, based on such criterion, Gyroid exhibited greater applicability as bone scaffolds. In summary, this study provides comprehensive assessment of the effect of pore size and demonstrates the efficient estimation of an in-silico framework for evaluating lattice structures as medical implants, which could be applied to other lattice architectures.
Collapse
Affiliation(s)
- Saran Seehanam
- Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| | - Suppakrit Khrueaduangkham
- Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| | - Chomdao Sinthuvanich
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Viritpon Srimaneepong
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patcharapit Promoppatum
- Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
- OsseoLabs Co. Ltd., Bangkok, 10400, Thailand
| |
Collapse
|
3
|
Blázquez-Carmona P, Mora-Macías J, Morgaz J, Granados MDM, Domínguez J, Reina-Romo E. Gait analysis: An effective tool to mechanically monitor the bone regeneration of critical-sized defects in tissue engineering applications. PLoS One 2023; 18:e0296510. [PMID: 38157369 PMCID: PMC10756556 DOI: 10.1371/journal.pone.0296510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Tissue engineering has emerged as an innovative approach to treat critical-size bone defects using biocompatible scaffolds, thus avoiding complex distraction surgeries or limited stock grafts. Continuous regeneration monitoring is essential in critical-size cases due to the frequent appearance of non-unions. This work evaluates the potential clinical use of gait analysis for the mechanical assessment of a tissue engineering regeneration as an alternative to the traditional and hardly conclusive manual or radiological follow-up. MATERIALS AND METHODS The 15-mm metatarsal fragment of eight female merino sheep was surgically replaced by a bioceramic scaffold stabilized with an external fixator. Gait tests were performed weekly by making the sheep walk on an instrumented gangway. The evolution of different kinematic and dynamic parameters was analyzed for all the animal's limbs, as well as asymmetries between limbs. Finally, potential correlation in the recovery of the gait parameters was evaluated through the linear regression models. RESULTS After surgery, the operated limb has an altered way of carrying body weight while walking. Its loading capacity was significantly reduced as the stance phases were shorter and less impulsive. The non-operated limbs compensated for this mobility deficit. All parameters were normalizing during the consolidation phase while the bone callus was simultaneously mineralizing. The results also showed high levels of asymmetry between the operated limb and its contralateral, which exceeded 150% when analyzing the impulse after surgery. Gait recovery significantly correlated between symmetrical limbs. CONCLUSIONS Gait analysis was presented as an effective, low-cost tool capable of mechanically predicting the regeneration of critical-size defects treated by tissue engineering, as comparing regeneration processes or novel scaffolds. Despite the progressive normalization as the callus mineralized, the bearing capacity reduction and the asymmetry of the operated limb were more significant than in other orthopedic alternatives.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Department of Mechanical and Manufacturing Engineering, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), University of Seville, Seville, Spain
| | - Juan Mora-Macías
- Instituto de Biomedicina de Sevilla (IBiS), University of Seville, Seville, Spain
- Department of Mining, Mechanical, Energy and Building Engineering, Escuela Técnica Superior de Ingeniería, University of Huelva, Huelva, Spain
| | - Juan Morgaz
- Department of Animal Medicine and Surgery, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - María del Mar Granados
- Department of Animal Medicine and Surgery, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - Jaime Domínguez
- Department of Mechanical and Manufacturing Engineering, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), University of Seville, Seville, Spain
| | - Esther Reina-Romo
- Department of Mechanical and Manufacturing Engineering, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), University of Seville, Seville, Spain
| |
Collapse
|
4
|
Blázquez-Carmona P, Mora-Macías J, Martínez-Vázquez FJ, Morgaz J, Domínguez J, Reina-Romo E. Mechanics Predicts Effective Critical-Size Bone Regeneration Using 3D-Printed Bioceramic Scaffolds. Tissue Eng Regen Med 2023; 20:893-904. [PMID: 37606809 PMCID: PMC10519928 DOI: 10.1007/s13770-023-00577-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND 3D-printed bioceramic scaffolds have gained popularity due to their controlled microarchitecture and their proven biocompatibility. However, their high brittleness makes their surgical implementation complex for weight-bearing bone treatments. Thus, they would require difficult-to-instrument rigid internal fixations that limit a rigorous evaluation of the regeneration progress through the analysis of mechanic-structural parameters. METHODS We investigated the compatibility of flexible fixations with fragile ceramic implants, and if mechanical monitoring techniques are applicable to bone tissue engineering applications. Tissue engineering experiments were performed on 8 ovine metatarsi. A 15 mm bone segment was directly replaced with a hydroxyapatite scaffold and stabilized by an instrumented Ilizarov-type external fixator. Several in vivo monitoring techniques were employed to assess the mechanical and structural progress of the tissue. RESULTS The applied surgical protocol succeeded in combining external fixators and subject-specific bioceramic scaffolds without causing fatal fractures of the implant due to stress concentrator. The bearing capacity of the treated limb was initially altered, quantifying a 28-56% reduction of the ground reaction force, which gradually normalized during the consolidation phase. A faster recovery was reported in the bearing capacity, stiffening and bone mineral density of the callus. It acquired a predominant mechanical role over the fixator in the distribution of internal forces after one post-surgical month. CONCLUSION The bioceramic scaffold significantly accelerated in vivo the bone formation compared to other traditional alternatives in the literature (e.g., distraction osteogenesis). In addition, the implemented assessment techniques allowed an accurate quantitative evaluation of the bone regeneration through mechanical and imaging parameters.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain.
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain.
| | - Juan Mora-Macías
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Huelva, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
| | - Francisco J Martínez-Vázquez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain
| | - Juan Morgaz
- Departamento Medicina y Cirugía Animal, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - Jaime Domínguez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Avenida Camino de los Descubrimientos s/n, 41092, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Pais AI, Belinha J, Alves JL. Advances in Computational Techniques for Bio-Inspired Cellular Materials in the Field of Biomechanics: Current Trends and Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113946. [PMID: 37297080 DOI: 10.3390/ma16113946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Cellular materials have a wide range of applications, including structural optimization and biomedical applications. Due to their porous topology, which promotes cell adhesion and proliferation, cellular materials are particularly suited for tissue engineering and the development of new structural solutions for biomechanical applications. Furthermore, cellular materials can be effective in adjusting mechanical properties, which is especially important in the design of implants where low stiffness and high strength are required to avoid stress shielding and promote bone growth. The mechanical response of such scaffolds can be improved further by employing functional gradients of the scaffold's porosity and other approaches, including traditional structural optimization frameworks; modified algorithms; bio-inspired phenomena; and artificial intelligence via machine learning (or deep learning). Multiscale tools are also useful in the topological design of said materials. This paper provides a state-of-the-art review of the aforementioned techniques, aiming to identify current and future trends in orthopedic biomechanics research, specifically implant and scaffold design.
Collapse
Affiliation(s)
- A I Pais
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4200-465 Porto, Portugal
| | - J Belinha
- Department of Mechanical Engineering, ISEP, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - J L Alves
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4200-465 Porto, Portugal
- Department of Mechanical Engineering, FEUP, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Logeshwaran A, Elsen R, Nayak S. Mechanical and biological characteristics of 3D fabricated clay mineral and bioceramic composite scaffold for bone tissue applications. J Mech Behav Biomed Mater 2023; 138:105633. [PMID: 36603527 DOI: 10.1016/j.jmbbm.2022.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
3D printing technology provides a platform to fabricate a wide range of structures and complex geometry-based scaffolds through computer-aided design (CAD). This study investigates the possibility of developing Bentonite(BEN)/Hydroxyapatite(HAP) scaffold with different HAP wt% (25, 50, 75) using a 3D printing technique (Robocasting) for potential bone tissue applications. Thermal stability of the composites was characterized in TGA and rheological properties of slurries were observed to have different viscosity and shear stress, especially BEN-HAP 50 wt% achieves all criteria for high-quality printing. The fabricated scaffolds were subjected to sintering from 200 °C to 1000 °C for proper densification and attained a maximum compression strength of 52 MPa at 1000 °C for the printed structures. Changes in crystallinity and functional groups were observed as well with respective sintering temperatures. In this study, we also discussed the extrusion and rheological properties of the composite slurry. Porosity, water absorption, degradation and density were studied to understand the physical properties of the sintered scaffolds. The biological characteristics of the scaffold were studied using MG63 cell lines In vitro biocompatibility study and expressed 91% of viability for the 1000 °C sintered samples under controlled culture conditions.
Collapse
Affiliation(s)
- A Logeshwaran
- School Of Bioscience And Technology, Vellore Institute Of Technology (VIT), Katpadi, Vellore, 632014, Tamil nadu, India
| | - Renold Elsen
- school Of Mechanical Engineering, Vellore Institute Of Technology (VIT), Katpadi, Vellore, 632014, Tamil Nadu, India
| | - Sunita Nayak
- School Of Bioscience And Technology, Vellore Institute Of Technology (VIT), Katpadi, Vellore, 632014, Tamil nadu, India.
| |
Collapse
|
7
|
Entezari A, Liu NC, Zhang Z, Fang J, Wu C, Wan B, Swain M, Li Q. Nondeterministic multiobjective optimization of 3D printed ceramic tissue scaffolds. J Mech Behav Biomed Mater 2023; 138:105580. [PMID: 36509011 DOI: 10.1016/j.jmbbm.2022.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Despite significant advances in the design optimization of bone scaffolds for enhancing their biomechanical properties, the functionality of these synthetic constructs remains suboptimal. One of the main challenges in the structural optimization of bone scaffolds is associated with the large uncertainties caused by the manufacturing process, such as variations in scaffolds' geometric features and constitutive material properties after fabrication. Unfortunately, such non-deterministic issues have not been considered in the existing optimization frameworks, thereby limiting their reliability. To address this challenge, a novel multiobjective robust optimization approach is proposed here such that the effects of uncertainties on the optimized design can be minimized. This study first conducted computational analyses of a parameterized ceramic scaffold model to determine its effective modulus, structural strength, and permeability. Then, surrogate models were constructed to formulate explicit mathematical relationships between the geometrical parameters (design variables) and mechanical and fluidic properties. The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was adopted to generate the robust Pareto solutions for an optimal set of trade-offs between the competing objective functions while ensuring the effects of the noise parameters to be minimal. Note that the nondeterministic optimization of tissue scaffold presented here is the first of its kind in open literature, which is expected to shed some light on this significant topic of scaffold design and additive manufacturing in a more realistic way.
Collapse
Affiliation(s)
- Ali Entezari
- School of Biomedical Engineering, University of Technology Sydney, NSW, 2007, Australia.
| | - Nai-Chun Liu
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Zhongpu Zhang
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Jianguang Fang
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Boyang Wan
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Michael Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW, 2008, Australia.
| |
Collapse
|
8
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
9
|
Li F, Chen X, Liu P. A Review on Three-Dimensional Printed Silicate-Based Bioactive Glass/Biodegradable Medical Synthetic Polymer Composite Scaffolds. TISSUE ENGINEERING. PART B, REVIEWS 2022. [PMID: 36301943 DOI: 10.1089/ten.teb.2022.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, tissue engineering scaffolds have turned into the preferred option for the clinical treatment of pathological and traumatic bone defects. In this field, silicate-based bioactive glasses (SBGs) and biodegradable medical synthetic polymers (BMSPs) have attracted a great deal of attention owing to their shared exceptional advantages, like excellent biocompatibility, good biodegradability, and outstanding osteogenesis. Three-dimensional (3D) printed SBG/BMSP scaffolds can not only replicate the mechanical properties and microstructure of natural bone but also degrade in situ after service and end up being replaced by regenerated bone tissue in vivo. This review first consolidates the research efforts in 3D printed SBG/BMSP scaffolds, and then focuses on their composite mechanism. This review may help to provide a fresh perspective for SBG/BMSP composite system in bone regeneration.
Collapse
Affiliation(s)
- Fulong Li
- Electromechanical Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaohong Chen
- Electromechanical Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China.,Biomedical Materials, Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Ping Liu
- Electromechanical Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China.,Biomedical Materials, Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| |
Collapse
|
10
|
Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Acta Biomater 2022; 146:317-340. [PMID: 35533924 DOI: 10.1016/j.actbio.2022.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Porous scaffolds have recently attracted attention in bone tissue engineering. The implanted scaffolds are supposed to satisfy the mechanical and biological requirements. In this study, two porous structures named MFCC-1 (modified face centered cubic-1) and MFCC-2 (modified face centered cubic-2) are introduced. The proposed porous architectures are evaluated, optimized, and tested to enhance mechanical and biological properties. The geometric parameters of the scaffolds with porosities ranging from 70% to 90% are optimized to find a compromise between the effective Young's modulus and permeability, as well as satisfying the pore size and specific surface area requirements. To optimize the effective Young's modulus and permeability, we integrated a mathematical formulation, finite element analysis, and computational fluid dynamics simulations. For validation, the optimized scaffolds were 3D-printed, tested, and compared with two different orthogonal cylindrical struts (OCS) scaffold architectures. The MFCC designs are preferred to the generic OCS scaffolds from various perspectives: a) the MFCC architecture allows scaffold designs with porosities up to 96%; b) the very porous architecture of MFCC scaffolds allows achieving high permeabilities, which could potentially improve the cell diffusion; c) despite having a higher porosity compared to the OCS scaffolds, MFCC scaffolds improve mechanical performance regarding Young's modulus, stress concentration, and apparent yield strength; d) the proposed structures with different porosities are able to cover all the range of permeability for the human trabecular bones. The optimized MFCC designs have simple architectures and can be easily fabricated and used to improve the quality of load-bearing orthopedic scaffolds. STATEMENT OF SIGNIFICANCE: Porous scaffolds are increasingly being studied to repair large bone defects. A scaffold is supposed to withstand mechanical loads and provide an appropriate environment for bone cell growth after implantation. These mechanical and biological requirements are usually contradicting; improving the mechanical performance would require a reduction in porosity and a lower porosity is likely to reduce the biological performance of the scaffold. Various studies have shown that the mechanical and biological performance of bone scaffolds can be improved by internal architecture modification. In this study, we propose two scaffold architectures named MFCC-1 and MFCC-2 and provide an optimization framework to simultaneously optimize their stiffness and permeability to improve their mechanical and biological performances.
Collapse
|
12
|
Mechanical Behaviour Evaluation of Porous Scaffold for Tissue-Engineering Applications Using Finite Element Analysis. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6020046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In recent years, finite element analysis (FEA) models of different porous scaffold shapes consisting of various materials have been developed to predict the mechanical behaviour of the scaffolds and to address the initial goals of 3D printing. Although mechanical properties of polymeric porous scaffolds are determined through FEA, studies on the polymer nanocomposite porous scaffolds are limited. In this paper, FEA with the integration of material designer and representative volume elements (RVE) was carried out on a 3D scaffold model to determine the mechanical properties of boron nitride nanotubes (BNNTs)-reinforced gelatin (G) and alginate (A) hydrogel. The maximum stress regions were predicted by FEA stress distribution. Furthermore, the analysed material model and the boundary conditions showed minor deviation (4%) compared to experimental results. It was noted that the stress regions are detected at the zone close to the pore areas. These results indicated that the model used in this work could be beneficial in FEA studies on 3D-printed porous structures for tissue engineering applications.
Collapse
|
13
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
14
|
Zhang Z, Yang J, Zou H, Wang W, Wu X, Lin X. Mathematical Analysis of Application of a Three-Dimensional Printing Fixator in the Fracture of Multiple Ribs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5626228. [PMID: 34630610 PMCID: PMC8500754 DOI: 10.1155/2021/5626228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022]
Abstract
Data were obtained from 66 clinical patients. The patients were divided into a non-3D printing group (control group) and a 3D printing group (intervention group) in a 1 : 1 ratio, with 33 patients in each group. The information including gender, age, incision length, number of surgical roots, bleeding volume, operation time, and intraoperative blood transfusion was collected for SPSS analysis. The results showed the following: (1) The paired t-test was used to test the difference of experimental data. There was a significant difference of 0.01 between the incision length/surgical root number in the intervention group and the incision length/surgical root number in the control group. The incision length/surgical root number in the intervention group was significantly lower than that in the control group. (2) Surgical time, intraoperative blood transfusion, age, and incision length/surgical root number in the intervention group had a significant positive impact on the amount of bleeding. Gender did not affect the amount of bleeding. (3) A total of 1 item of operation time in the intervention group had a significant positive impact on intraoperative blood transfusion. (4) The incision length/number of surgical roots in the intervention group had a noteworthy negative impact on blood transfusion during the operation.
Collapse
Affiliation(s)
- Zhigong Zhang
- Department of Cardiothoracic Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Jinsong Yang
- Department of Cardiothoracic Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Haoyu Zou
- Department of Cardiothoracic Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Wen Wang
- Department of Cardiothoracic Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Xiangyi Wu
- Department of Cardiothoracic Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Xiaojuan Lin
- Department of Paediatrics, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| |
Collapse
|
15
|
Ruiz de Galarreta S, Doyle RJ, Jeffers J, Ghouse S. Laser powder bed fusion of porous graded structures: A comparison between computational and experimental analysis. J Mech Behav Biomed Mater 2021; 123:104784. [PMID: 34419887 DOI: 10.1016/j.jmbbm.2021.104784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Functionally graded porous structures (FGPSs) are gaining interest in the biomedical sector, specifically for orthopaedic implants. In this study, the compressive behaviour of seven different FGPSs comprised of Face Centred Cubic (FCC) and the Octet truss unit cells (OCT) were analysed. The porosity of the structures were graded in different directions (radially, longitudinally, laterally and longitudinally & radially) by varying the strut diameters or by combining the two types of unit cells. The structures were manufactured by laser power bed fusion and compression tests were performed. Radially and laterally porous graded structures were found to outperform uniform porous structures with an increase in stiffness of 13.7% and 21.1% respectively. The experimental and finite element analysis (FEA) results were in good agreement with differences in elastic modulus of 9.4% and yield strength of 15.8%. A new FEA beam model is proposed in this study to analyse this type of structures with accurate results and the consequent reduction of computational time. The accuracy of the Kelvin-Voight model and the rule of mixtures for predicting the mechanical behaviour of different FGPSs was also investigated. The results demonstrate the adequacy of the analytical models specifically for hybrid structures and for structures with smooth diameter transitions.
Collapse
Affiliation(s)
- Sergio Ruiz de Galarreta
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain.
| | - Ruben J Doyle
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jonathan Jeffers
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Shaaz Ghouse
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|