1
|
Charron PN, Tahir I, Foley C, White G, Floreani RA. Whey Protein Isolate Composites as Potential Scaffolds for Cultivated Meat. ACS APPLIED BIO MATERIALS 2024; 7:2153-2163. [PMID: 38502811 DOI: 10.1021/acsabm.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Modern food technology has given rise to numerous alternative protein sources in response to a growing human population and the negative environmental impacts of current food systems. To aid in achieving global food security, one such form of alternative protein being investigated is cultivated meat, which applies the principles of mechanical and tissue engineering to produce animal proteins and meat products from animal cells. Herein, nonmodified and methacrylated whey protein formed hydrogels with methacrylated alginate as potential tissue engineering scaffolds for cultivated meat. Whey protein is a byproduct of dairy processing and was selected because it is an approved food additive and cytocompatible and has shown efficacy in other biomaterial applications. Whey protein and alginate scaffolds were formed via visible light cross-linking in aqueous solutions under ambient conditions. The characteristics of the precursor solution and the physical-mechanical properties of the scaffolds were quantified; while gelation occurred within the homo- and copolymer hydrogels, the integrity of the network was significantly altered with varying components. Qualitatively, the scaffolds exhibited a three-dimensional (3D) interconnected porous network. Whey protein isolate (WPI)-based scaffolds were noncytotoxic and supported in vitro myoblast adhesion and proliferation. The data presented support the hypothesis that the composition of the hydrogel plays a significant role in the scaffold's performance.
Collapse
Affiliation(s)
- Patrick N Charron
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Irfan Tahir
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Christopher Foley
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Gabriella White
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Rachael A Floreani
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
- Materials Science Program, University of Vermont, Burlington, Vermont 05405, United States
- Food Systems Program, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
2
|
Asciak L, Gilmour L, Williams JA, Foster E, Díaz-García L, McCormick C, Windmill JFC, Mulvana HE, Jackson-Camargo JC, Domingo-Roca R. Investigating multi-material hydrogel three-dimensional printing for in vitro representation of the neo-vasculature of solid tumours: a comprehensive mechanical analysis and assessment of nitric oxide release from human umbilical vein endothelial cells. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230929. [PMID: 37593713 PMCID: PMC10427827 DOI: 10.1098/rsos.230929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Many solid tumours (e.g. sarcoma, carcinoma and lymphoma) form a disorganized neo-vasculature that initiates uncontrolled vessel formation to support tumour growth. The complexity of these environments poses a significant challenge for tumour medicine research. While animal models are commonly used to address some of these challenges, they are time-consuming and raise ethical concerns. In vitro microphysiological systems have been explored as an alternative, but their production typically requires multi-step lithographic processes that limit their production. In this work, a novel approach to rapidly develop multi-material tissue-mimicking, cell-compatible platforms able to represent the complexity of a solid tumour's neo-vasculature is investigated via stereolithography three-dimensional printing. To do so, a series of acrylate resins that yield covalently photo-cross-linked hydrogels with healthy and diseased mechano-acoustic tissue-mimicking properties are designed and characterized. The potential viability of these materials to displace animal testing in preclinical research is assessed by studying the morphology, actin expression, focal adhesions and nitric oxide release of human umbilical vein endothelial cells. These materials are exploited to produce a simplified multi-material three-dimensional printed model of the neo-vasculature of a solid tumour, demonstrating the potential of our approach to replicate the complexity of solid tumours in vitro without the need for animal testing.
Collapse
Affiliation(s)
- Lisa Asciak
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Lauren Gilmour
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Euan Foster
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Lara Díaz-García
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - James F. C. Windmill
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Helen E. Mulvana
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Roger Domingo-Roca
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
3
|
Liu S, Cheng L, Liu Y, Zhang H, Song Y, Park JH, Dashnyam K, Lee JH, Khalak FAH, Riester O, Shi Z, Ostrovidov S, Kaji H, Deigner HP, Pedraz JL, Knowles JC, Hu Q, Kim HW, Ramalingam M. 3D Bioprinting tissue analogs: Current development and translational implications. J Tissue Eng 2023; 14:20417314231187113. [PMID: 37464999 PMCID: PMC10350769 DOI: 10.1177/20417314231187113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a promising and rapidly evolving technology in the field of additive manufacturing. It enables the fabrication of living cellular constructs with complex architectures that are suitable for various biomedical applications, such as tissue engineering, disease modeling, drug screening, and precision regenerative medicine. The ultimate goal of bioprinting is to produce stable, anatomically-shaped, human-scale functional organs or tissue substitutes that can be implanted. Although various bioprinting techniques have emerged to develop customized tissue-engineering substitutes over the past decade, several challenges remain in fabricating volumetric tissue constructs with complex shapes and sizes and translating the printed products into clinical practice. Thus, it is crucial to develop a successful strategy for translating research outputs into clinical practice to address the current organ and tissue crises and improve patients' quality of life. This review article discusses the challenges of the existing bioprinting processes in preparing clinically relevant tissue substitutes. It further reviews various strategies and technical feasibility to overcome the challenges that limit the fabrication of volumetric biological constructs and their translational implications. Additionally, the article highlights exciting technological advances in the 3D bioprinting of anatomically shaped tissue substitutes and suggests future research and development directions. This review aims to provide readers with insight into the state-of-the-art 3D bioprinting techniques as powerful tools in engineering functional tissues and organs.
Collapse
Affiliation(s)
- Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Yakui Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Yongteng Song
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, South Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
| | - Fouad Al-Hakim Khalak
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain
| | - Oliver Riester
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, Germany
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Serge Ostrovidov
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, Germany
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain
| | - Jonathan C Knowles
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London, UK
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
| | - Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, Germany
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Joint Research Laboratory on Advanced Pharma Development Initiative, A Joined Venture of TECNALIA and School of Pharmacy, University of the Basque Country (UPV/ EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- Bioprinting Laboratory, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz, Spain
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara, Turkey
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Ebrahimi-Nozari T, Imani R, Haghbin-Nazarpak M, Nouri A. Multimodal effects of asymmetric coating of coronary stents by electrospinning and electrophoretic deposition. Int J Pharm 2022; 630:122437. [PMID: 36435505 DOI: 10.1016/j.ijpharm.2022.122437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Drug-eluting stents (DESs) are drug-coated vascular implants that inhibit smooth muscle cell proliferation and limit in-stent re-stenosis. However, traditional DESs release a single drug into the blood and cannot cope with complex mechanisms in atherosclerosis and body responses. The present study aimed to develop a novel multimodal stent by fabricating asymmetric coating with electrophoretic deposition and electrospinning. Herein, we use heparin-loaded alginate (Hep/Alg) and atorvastatin calcium-loaded polyurethane (AtvCa/PU) coatings on the stent luminal and abluminal surfaces, respectively. Scanning electron microscopy (SEM) micrographs showed that the alginate coatings had uniformity and thin thickness. Meanwhile, the PU fibers were formed without beads, with an acceptable diameter and suitable mechanical properties. PU nanofiber revealed minimal degradation in a 1-month study. The release of AtvCa and Hep continued for 8 days without a significant initial burst release. None of the stent coatings were cytotoxic or hemolytic, and PU nanofibers supported the survival of human umbilical endothelial cells (HUVEC) with high adhesion and flattened morphologies. The results indicate that electrophoretic deposition and electrospinning have significant potential for achieving asymmetric coating on stents and a promising approach for dual drug release for multimodal effects in vascular stent applications.
Collapse
Affiliation(s)
- Tahoura Ebrahimi-Nozari
- Biomedical Engineering Department, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Biomedical Engineering Department, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, Iran.
| | - Masoumeh Haghbin-Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Alireza Nouri
- Biomedical Engineering Department, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
5
|
Nawaz A, Zaman Safi S, Sikandar S, Zeeshan R, Zulfiqar S, Mehmood N, Alobaid HM, Rehman F, Imran M, Tariq M, Ali A, Emran TB, Yar M. Heparin-Loaded Alginate Hydrogels: Characterization and Molecular Mechanisms of Their Angiogenic and Anti-Microbial Potential. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196683. [PMID: 36234025 PMCID: PMC9573464 DOI: 10.3390/ma15196683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 05/06/2023]
Abstract
Background: Chronic wounds continue to be a global concern that demands substantial resources from the healthcare system. The process of cutaneous wound healing is complex, involving inflammation, blood clotting, angiogenesis, migration and remodeling. In the present study, commercially available alginate wound dressings were loaded with heparin. The purpose of the study was to enhance the angiogenic potential of alginate wound dressings and analyze the antibacterial activity, biocompatibility and other relevant properties. We also aimed to conduct some molecular and gene expression studies to elaborate on the mechanisms through which heparin induces angiogenesis. Methods: The physical properties of the hydrogels were evaluated by Fourier transform infrared spectroscopy (FTIR). Swelling ability was measured by soaking hydrogels in the Phosphate buffer at 37 °C, and cell studies were conducted to evaluate the cytotoxicity and biocompatibility of hydrogels in NIH3T3 (fibroblasts). Real-time PCR was conducted to check the molecular mechanisms of heparin/alginate-induced angiogenesis. The physical properties of the hydrogels were evaluated by Fourier transform infrared spectroscopy (FTIR). Results: FTIR confirmed the formation of heparin-loaded alginate wound dressing and the compatibility of both heparin and alginate. Among all, 10 µg/mL concentration of heparin showed the best antibacterial activity against E. coli. The swelling was considerably increased up to 1500% within 1 h. Alamar Blue assay revealed no cytotoxic effect on NIH3T3. Heparin showed good anti-microbial properties and inhibited the growth of E. coli in zones with a diameter of 18 mm. The expression analysis suggested that heparin probably exerts its pro-angiogenetic effect through VEGF and cPGE. Conclusions: We report that heparin-loaded alginate dressings are not cytotoxic and offer increased angiogenic and anti-bacterial potential. The angiogenesis is apparently taken through the VEGF pathway.
Collapse
Affiliation(s)
- Ayesha Nawaz
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
- Department of Biology, Lahore Garrison University, Lahore 54810, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
- Correspondence:
| | - Shomaila Sikandar
- Department of Biology, Lahore Garrison University, Lahore 54810, Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Saima Zulfiqar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Nadia Mehmood
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Hussah M. Alobaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Tariq
- Department of Medical Laboratory Technology, University College of Duba, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Tahir I, Floreani R. Dual-Crosslinked Alginate-Based Hydrogels with Tunable Mechanical Properties for Cultured Meat. Foods 2022; 11:foods11182829. [PMID: 36140953 PMCID: PMC9498068 DOI: 10.3390/foods11182829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Cultured meat refers to the production of animal tissue by utilizing the same techniques as tissue engineering through cell culture. Various biomaterials have been designed to serve as in vitro supports for cell viability, growth, and migration. In this study, visible light and dual-crosslinked alginate hydrogels were designed to enable control of the physical and mechanical properties needed for the fabrication of cultured meat scaffolds. We hypothesized that a difference in hydrogel stiffness would influence cell behavior, indicating the efficacy of our processing methods to benefit the cultured meat field. Herein, we synthesized and created: (1) methacrylated alginate (AlgMA) to enable covalent crosslinking via visible light exposure, (2) Methacrylated alginate and arginyl-glycyl-aspartic acid RGD conjugates (AlgMA-RGD), using carbodiimide chemistries to provide cell-binding sites on the material, and (3) designer hydrogels incorporating different crosslinking techniques. The material and mechanical properties were evaluated to determine the structural integrity of the hydrogels, and in vitro cell assays were conducted to verify cytocompatibility and cell adhesion. Gelation, swell ratio, and weight loss calculations revealed longer gelation times for the AlgMA scaffolds and similar physical properties for all hydrogel groups. We showed that by adjusting the polymer concentration and the crosslinking methodology, the scaffold’s mechanical properties can be controlled and optimized within physiological ranges. Incorporating dual crosslinking significantly increased the compressive moduli of the AlgMA hydrogels, compared to visible-light crosslinking alone. Moreover, the muscle satellite cells responded favorably to the AlgMA scaffolds, with clear differences in cell density when cultured on materials with significantly different mechanical properties. Our results indicate the usefulness of the dual-crosslinking alginate hydrogel system to support in vitro meat growth.
Collapse
Affiliation(s)
- Irfan Tahir
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA
| | - Rachael Floreani
- Department of Mechanical Engineering, Department of Electrical and Biomedical Engineering, Materials Science and Engineering Graduate Program, Food Systems Graduate Program, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
7
|
Zhao D, Wang X, Cheng B, Yin M, Hou Z, Li X, Liu K, Tie C, Yin M. Degradation-Kinetics-Controllable and Tissue-Regeneration-Matchable Photocross-linked Alginate Hydrogels for Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21886-21905. [PMID: 35507922 DOI: 10.1021/acsami.2c01739] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocross-linked alginate hydrogels, due to their biodegradability, biocompatibility, strong control for gelling kinetics in space and time, and admirable adaptability for in situ polymerization with a minimally invasive approach in surgical procedures, have created great expectations in bone regeneration. However, hydrogels with suitable degradation kinetics that can match the tissue regeneration process have not been designed, which limits their further application in bone tissue engineering. Herein, we finely developed an oxidation strategy for alginate to obtain hydrogels with more suitable degradation rates and comprehensively explored their physical and biological performances in vitro and in vivo to further advance the clinical application for the hydrogels in bone repair. The physical properties of the gels can be tuned via tailoring the degree of alginate oxidation. In particular, in vivo degradation studies showed that the degradation rates of the gels were significantly increased by oxidizing alginate. The activity, proliferation, initial adhesion, and osteogenic differentiation of rat and rabbit bone marrow stromal cells (BMSCs) cultured with/in the hydrogels were explored, and the results demonstrated that the gels possessed excellent biocompatibility and that the encapsulated BMSCs were capable of osteogenic differentiation. Furthermore, in vivo implantation of rabbit BMSC-loaded gels into tibial plateau defects of rabbits demonstrated the feasibility of hydrogels with appropriate degradation rates for bone repair. This study indicated that hydrogels with increasingly controllable and matchable degradation kinetics and satisfactory bioproperties demonstrate great clinical potential in bone tissue engineering and regenerative medicine and could also provide references for drug/growth-factor delivery therapeutic strategies for diseases requiring specific drug/growth-factor durations of action.
Collapse
Affiliation(s)
- Delu Zhao
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
- Hefei Stomatological Clinic Hospital, Anhui Medical University & Hefei Stomatological Hospital, Hefei 230001, Anhui, China
| | - Xin Wang
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Bo Cheng
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Miaomiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Zhiqiang Hou
- Department of Spine and Spinal Cord Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xiaobao Li
- Department of Stomatology, Affiliated Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Kun Liu
- Hefei Stomatological Clinic Hospital, Anhui Medical University & Hefei Stomatological Hospital, Hefei 230001, Anhui, China
| | - Chaorong Tie
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Miao Yin
- Center of Stomatology, Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
8
|
Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022; 10:837172. [PMID: 35646879 PMCID: PMC9133562 DOI: 10.3389/fbioe.2022.837172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bone regeneration in large segmental defects depends on the action of osteoblasts and the ingrowth of new blood vessels. Therefore, it is important to promote the release of osteogenic/angiogenic growth factors. Since the discovery of heparin, its anticoagulant, anti-inflammatory, and anticancer functions have been extensively studied for over a century. Although the application of heparin is widely used in the orthopedic field, its auxiliary effect on bone regeneration is yet to be unveiled. Specifically, approximately one-third of the transforming growth factor (TGF) superfamily is bound to heparin and heparan sulfate, among which TGF-β1, TGF-β2, and bone morphogenetic protein (BMP) are the most common growth factors used. In addition, heparin can also improve the delivery and retention of BMP-2 in vivo promoting the healing of large bone defects at hyper physiological doses. In blood vessel formation, heparin still plays an integral part of fracture healing by cooperating with the platelet-derived growth factor (PDGF). Importantly, since heparin binds to growth factors and release components in nanomaterials, it can significantly facilitate the controlled release and retention of growth factors [such as fibroblast growth factor (FGF), BMP, and PDGF] in vivo. Consequently, the knowledge of scaffolds or delivery systems composed of heparin and different biomaterials (including organic, inorganic, metal, and natural polymers) is vital for material-guided bone regeneration research. This study systematically reviews the structural properties and auxiliary functions of heparin, with an emphasis on bone regeneration and its application in biomaterials under physiological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| |
Collapse
|
9
|
Guo M, Wang X, Liu Y, Yu H, Dong J, Cui Z, Bai Z, Li K, Li Q. Hierarchical Shish-Kebab Structures Functionalizing Nanofibers for Controlled Drug Release and Improved Antithrombogenicity. Biomacromolecules 2022; 23:1337-1349. [PMID: 35235295 DOI: 10.1021/acs.biomac.1c01572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The functionalization of the fibrous scaffolds including drug loading and release is of significance in tissue engineering and regenerative medicine. Our previous results have shown that the shish-kebab structure-modified fibrous scaffold shows a completely different microenvironment that mimics the topography of the collagen fibers, which interestingly facilitates the cell adhesion and migration. However, the functionalization of the unique structure needs to be further investigated. In this study, we modified the heparin-loaded fiber with a shish-kebab structure and tuned the kebab structure as the barrier for the sustained release of heparin. The introduction of the kebab structure increases the diffusion energy barrier by extending the diffusion distance. Moreover, the discontinued surface topography of the shish-kebab structure altered the surface chemistry from hydrophobic for the original poly(ε-caprolactone) (PCL) nanofibers to hydrophilic for the PCL nanofibers with the shish-kebab structure, which might have inhibited the activation of fibrinogen and thus improved the anticoagulant ability. This synergistic effect of heparin and the kebab structure significantly promotes the endothelial cell affinity and antithrombogenicity. This method might be a viable and versatile drug delivery strategy in vascular tissue engineering.
Collapse
Affiliation(s)
- Meng Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Haichang Yu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahui Dong
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhixiang Cui
- Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
| | - Zhiyuan Bai
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|