1
|
Ma Y, Lin Q, Wang X, Liu Y, Yu X, Ren Z, Zhang Y, Guo L, Wu X, Zhang X, Li P, Duan W, Wei X. Biomechanical properties of articular cartilage in different regions and sites of the knee joint: acquisition of osteochondral allografts. Cell Tissue Bank 2024; 25:633-648. [PMID: 38319426 PMCID: PMC11143059 DOI: 10.1007/s10561-024-10126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Osteochondral allograft (OCA) transplantation involves grafting of natural hyaline cartilage and supporting subchondral bone into the cartilage defect area to restore its biomechanical and tissue structure. However, differences in biomechanical properties and donor-host matching may impair the integration of articular cartilage (AC). This study analyzed the biomechanical properties of the AC in different regions of different sites of the knee joint and provided a novel approach to OCA transplantation. Intact stifle joints from skeletally mature pigs were collected from a local abattoir less than 8 h after slaughter. OCAs were collected from different regions of the joints. The patella and the tibial plateau were divided into medial and lateral regions, while the trochlea and femoral condyle were divided into six regions. The OCAs were analyzed and compared for Young's modulus, the compressive modulus, and cartilage thickness. Young's modulus, cartilage thickness, and compressive modulus of OCA were significantly different in different regions of the joints. A negative correlation was observed between Young's modulus and the proportion of the subchondral bone (r = - 0.4241, P < 0.0001). Cartilage thickness was positively correlated with Young's modulus (r = 0.4473, P < 0.0001) and the compressive modulus (r = 0.3678, P < 0.0001). During OCA transplantation, OCAs should be transplanted in the same regions, or at the closest possible regions to maintain consistency of the biomechanical properties and cartilage thickness of the donor and recipient, to ensure smooth integration with the surrounding tissue. A 7 mm depth achieved a higher Young's modulus, and may represent the ideal length.
Collapse
Affiliation(s)
- Yongsheng Ma
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Qitai Lin
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Xueding Wang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Yang Liu
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Xiangyang Yu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Zhiyuan Ren
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Yuanyu Zhang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Li Guo
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Xiaogang Wu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiangyu Zhang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Pengcui Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Wangping Duan
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China.
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China.
| | - Xiaochun Wei
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| |
Collapse
|
2
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran ,grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Amirhesam Babajani
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Radman Mazloomnejad
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Mohammad Reza Hatamnejad
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.19006.3e0000 0000 9632 6718Department of Surgery, University of California Los Angeles, Los Angeles, California USA
| | - Soheyl Bahrami
- grid.454388.60000 0004 6047 9906Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|