1
|
A Journey to the Conformational Analysis of T-Cell Epitope Peptides Involved in Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060356. [PMID: 32521758 PMCID: PMC7349157 DOI: 10.3390/brainsci10060356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/22/2023] Open
Abstract
Multiple sclerosis (MS) is a serious central nervous system (CNS) disease responsible for disability problems and deterioration of the quality of life. Several approaches have been applied to medications entering the market to treat this disease. However, no effective therapy currently exists, and the available drugs simply ameliorate the destructive disability effects of the disease. In this review article, we report on the efforts that have been conducted towards establishing the conformational properties of wild-type myelin basic protein (MBP), myelin proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG) epitopes or altered peptide ligands (ALPs). These efforts have led to the aim of discovering some non-peptide mimetics possessing considerable activity against the disease. These efforts have contributed also to unveiling the molecular basis of the molecular interactions implicated in the trimolecular complex, T-cell receptor (TCR)–peptide–major histocompatibility complex (MHC) or human leucocyte antigen (HLA).
Collapse
|
2
|
Cyclic citrullinated MBP 87-99 peptide stimulates T cell responses: Implications in triggering disease. Bioorg Med Chem 2016; 25:528-538. [PMID: 27908754 DOI: 10.1016/j.bmc.2016.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022]
Abstract
Amino acid mutations to agonist peptide epitopes of myelin proteins have been used to modulate immune responses and experimental autoimmune encephalomyelitis (EAE, animal model of multiple sclerosis). Such amino acid alteration are termed, altered peptide ligands (APL). We have shown that the agonist myelin basic protein (MBP) 87-99 epitope (MBP87-99) with crucial T cell receptor (TCR) substitutions at positions 91 and 96 (K91,P96 (TCR contact residues) to R91,A96; [R91,A96]MBP87-99) results in altered T cell responses and inhibits EAE symptoms. In this study, the role of citrullination of arginines in [R91,A96]MBP87-99 peptide analog was determined using in vivo experiments in combination with computational studies. The immunogenicity of linear [Cit91,A96,Cit97]MBP87-99 and its cyclic analog - cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 when conjugated to the carrier mannan (polysaccharide) were studied in SJL/J mice. It was found that mannosylated cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 peptide induced strong T cell proliferative responses and IFN-gamma cytokine secretion compared with the linear one. Moreover, the interaction of linear and cyclic peptide analogs with the major histocompatibility complex (MHC II, H2-IAs) and TCR was analyzed using molecular dynamics simulations at the receptor level, in order to gain a better understanding of the molecular recognition mechanisms that underly the different immunological profiles of citrullinated peptides compared to its agonist native counterpart MBP87-99 epitope. The results demonstrate that the citrullination of arginine in combination with the backbone conformation of mutated linear and cyclic analogs are significant elements for the immune response triggering the induction of pro-inflammatory cytokines.
Collapse
|
3
|
Ieronymaki M, Androutsou ME, Pantelia A, Friligou I, Crisp M, High K, Penkman K, Gatos D, Tselios T. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis. Biopolymers 2016; 104:506-14. [PMID: 26270247 DOI: 10.1002/bip.22710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/09/2015] [Accepted: 08/09/2015] [Indexed: 01/20/2023]
Abstract
A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides.
Collapse
Affiliation(s)
| | - Maria Eleni Androutsou
- Department of Chemistry, University of Patras, 26504, Rion, Greece.,Eldrug S.A., Pharmaceutical Company, 26504, Platani, Greece
| | - Anna Pantelia
- Department of Chemistry, University of Patras, 26504, Rion, Greece
| | - Irene Friligou
- Department of Chemistry, University of Patras, 26504, Rion, Greece.,Eldrug S.A., Pharmaceutical Company, 26504, Platani, Greece
| | - Molly Crisp
- BioArCh, Department of Chemistry, University of York, YO10 5DD, United Kingdom
| | - Kirsty High
- BioArCh, Department of Chemistry, University of York, YO10 5DD, United Kingdom
| | - Kirsty Penkman
- BioArCh, Department of Chemistry, University of York, YO10 5DD, United Kingdom
| | - Dimitrios Gatos
- Department of Chemistry, University of Patras, 26504, Rion, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504, Rion, Greece
| |
Collapse
|
4
|
Katsara M, Deraos S, Tselios TV, Pietersz G, Matsoukas J, Apostolopoulos V. Immune responses of linear and cyclic PLP139-151 mutant peptides in SJL/J mice: peptides in their free state versus mannan conjugation. Immunotherapy 2015; 6:709-24. [PMID: 25186603 DOI: 10.2217/imt.14.42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The predominant proteins of the CNS are myelin basic protein, proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein. PLP139-151 is one of the major encephalitogenic epitopes of PLP. The epitope PLP139-151 binds to MHC class II (I-A(s)) of SJL/J mice and induces Th1 responses. AIM The aim was to synthesize and test the immunological activity and cyclic analogs of PLP139-151 peptide and determine the immunological differences between adjuvant and conjugation to mannan. Materials & methods: We designed and synthesized cyclic peptides based on the linear PLP139-151 epitope by mutating critical T-cell receptor contact sites of residues W(144) and H(147), resulting in the mutant peptides PLP139-151, [L(144), R(147)]PLP139-151 or cyclo(139-151)PLP139-151 and cyclo(139-151) [L(144), R(147)]PLP139-151. In this study, mice were immunized with mutant peptides either emulsified in complete Freund's adjuvant or conjugated to reduced mannan and responses were assessed. RESULTS Linear double-mutant peptide [L(144), R(147)]PLP139-151 induced high levels of IL-4 responses and low levels of IgG total, and cyclization of this analog elicited low levels of IFN-γ. Moreover, linear [L(144), R(147)]PLP139-151 conjugated to reduced mannan did not induce IFN-γ, whilst both linear agonist PLP139-151 and cyclic agonist cyclo(139-151)PLP139-151 induced IFN-γ-secreting T cells. Molecular dynamics simulations of linear and cyclic(139-151)PLP139-151 analogs indicated the difference in topology of the most important for biological activity amino acids. CONCLUSION Cyclic double-mutant analog cyclo(139-151) [L(144), R(147)]PLP139-151 has potential for further studies for the immunotherapy of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Katsara
- Burnet Institute, Centre for Immunology, Immunology & Vaccine Laboratory, Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
5
|
Tselios T, Aggelidakis M, Tapeinou A, Tseveleki V, Kanistras I, Gatos D, Matsoukas J. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice. Molecules 2014; 19:17968-84. [PMID: 25375337 PMCID: PMC6270842 DOI: 10.3390/molecules191117968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/16/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35–55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35–55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35–55 peptide at the time of immunization.
Collapse
Affiliation(s)
- Theodore Tselios
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | | | - Anthi Tapeinou
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Vivian Tseveleki
- Department of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece.
| | - Ioannis Kanistras
- Department of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece.
| | - Dimitrios Gatos
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - John Matsoukas
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
6
|
Laimou D, Katsila T, Matsoukas J, Schally A, Gkountelias K, Liapakis G, Tamvakopoulos C, Tselios T. Rationally designed cyclic analogues of luteinizing hormone-releasing hormone: enhanced enzymatic stability and biological properties. Eur J Med Chem 2012; 58:237-47. [PMID: 23127987 DOI: 10.1016/j.ejmech.2012.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022]
Abstract
This article describes the rational design, synthesis and pharmacological properties of amide-linked cyclic analogues of Luteinizing Hormone-Releasing Hormone (LHRH) with substitutions at positions 1 (Pro), 6 (D-Leu/D-Trp), 9 (Aze) and 10 (BABA/Acp). These LHRH analogues fulfil the conformational requirements that are known in the literature (bend in the 5-8 segment) to be essential for receptor recognition and activation. Although, they are characterised by an overall low binding affinity to the LHRH-I receptor, the cyclic analogues that were studied and especially the cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH, exhibit a profoundly enhanced in vitro and in vivo stability and improved pharmacokinetics in comparison with their linear counterpart and leuprolide. Upon receptor binding, cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH causes testosterone release in C57/B16 mice (in vivo efficacy) that is comparable to that of leuprolide. Testosterone release is an acutely dose dependent effect that is blocked by the LHRH-I receptor antagonist, cetrorelix. The pharmacokinetic advantages and efficacy of cyclo(1-10)[Pro(1), D-Leu(6), BABA(10)] LHRH render this analogue a promising platform for future rational drug design studies towards the development of non-peptide LHRH mimetics.
Collapse
Affiliation(s)
- Despina Laimou
- Department of Chemistry, University of Patras, GR-26500 Patras, Greece
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Potamitis C, Matsoukas MT, Tselios T, Mavromoustakos T, Golič Grdadolnik S. Conformational analysis of the ΜΒΡ83-99 (Phe91) and ΜΒΡ83-99 (Tyr91) peptide analogues and study of their interactions with the HLA-DR2 and human TCR receptors by using molecular dynamics. J Comput Aided Mol Des 2011; 25:837-53. [PMID: 21898163 DOI: 10.1007/s10822-011-9467-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 08/17/2011] [Indexed: 11/27/2022]
Abstract
The two new synthetic analogues of the MBP(83-99) epitope substituted at Lys(91) (primary TCR contact) with Phe [MBP(83-99) (Phe(91))] or Tyr [MBP(83-99) (Tyr(91))], have been structurally elucidated using 1D and 2D high resolution NMR studies. The conformational analysis of the two altered peptide ligands (APLs) has been performed and showed that they adopt a linear and extended conformation which is in agreement with the structural requirements of the peptides that interact with the HLA-DR2 and TCR receptors. In addition, Molecular Dynamics (MD) simulations of the two analogues in complex with HLA-DR2 (DRA, DRB1*1501) and TCR were performed. Similarities and differences of the binding motif of the two analogues were observed which provide a possible explanation of their biological activity. Their differences in the binding mode in comparison with the MBP(83-99) epitope may also explain their antagonistic versus agonistic activity. The obtained results clearly indicate that substitutions in crucial amino acids (TCR contacts) in combination with the specific conformational characteristics of the MBP(83-99) immunodominant epitope lead to an alteration of their biological activity. These results make the rational drug design intriguing since the biological activity is very sensitive to the substitution and conformation of the mutated MBP epitopes.
Collapse
Affiliation(s)
- C Potamitis
- National Hellenic Research Foundation, Institute of Organic and Pharmaceutical Chemistry, Vas. Constantinou 48, 11635 Athens, Greece
| | | | | | | | | |
Collapse
|
8
|
Knapp B, Omasits U, Schreiner W, Epstein MM. A comparative approach linking molecular dynamics of altered peptide ligands and MHC with in vivo immune responses. PLoS One 2010; 5:e11653. [PMID: 20657836 PMCID: PMC2906508 DOI: 10.1371/journal.pone.0011653] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/18/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The recognition of peptide in the context of MHC by T lymphocytes is a critical step in the initiation of an adaptive immune response. However, the molecular nature of the interaction between peptide and MHC and how it influences T cell responsiveness is not fully understood. RESULTS We analyzed the immunological consequences of the interaction of MHC class II (I-Au) restricted 11-mer peptides of myelin basic protein with amino acid substitutions at position 4. These mutant peptides differ in MHC binding affinity, CD4+ T cell priming, and alter the severity of peptide-induced experimental allergic encephalomyelitis. Using molecular dynamics, a computational method of quantifying intrinsic movements of proteins at high resolution, we investigated conformational changes in MHC upon peptide binding. We found that irrespective of peptide binding affinity, MHC deformation appears to influence costimulation, which then leads to effective T cell priming and disease induction. Although this study compares in vivo and molecular dynamics results for three altered peptide ligands, further investigation with similar complexes is essential to determine whether spatial rearrangement of peptide-MHC and costimulatory complexes is an additional level of T cell regulation.
Collapse
Affiliation(s)
- Bernhard Knapp
- Department for Biomedical Computer Simulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Ulrich Omasits
- Department for Biomedical Computer Simulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Schreiner
- Department for Biomedical Computer Simulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Michelle M. Epstein
- Division of Immunology, Allergy, and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
NMR structural elucidation of myelin basic protein epitope 83-99 implicated in multiple sclerosis. Amino Acids 2009; 38:929-36. [PMID: 19468823 DOI: 10.1007/s00726-009-0301-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/02/2009] [Indexed: 10/20/2022]
Abstract
Myelin basic protein peptide 83-99 (MBP83-99) is the most immunodominant epitope playing a significant role in the multiple sclerosis (MS), an autoimmune disease of the central nervous system. Many peptide analogues, linear or cyclic have been designed and synthesized based on this segment in order to inhibit the experimental autoimmune encephalomyelitis, the best well-known animal model of MS. In this study, the solution structural motif of MBP(83-99) has been performed using 2D (1)H-NMR spectroscopy in dimethyl sulfoxide. A rather extended conformation, along with the formation of a well defined alpha-helix spanning residues Val(87)-Phe(90) is proposed, as no long-range NOE are presented. Moreover, the residues of MBP peptide that are important for T-cell receptor recognition are solvent exposed. The spatial arrangement of the side chain all over the sequence of our NMR based model exhibits great similarity with the solid state model, while both TCR contacts occupy the same region in space.
Collapse
|
10
|
Deraos G, Chatzantoni K, Matsoukas MT, Tselios T, Deraos S, Katsara M, Papathanasopoulos P, Vynios D, Apostolopoulos V, Mouzaki A, Matsoukas J. Citrullination of Linear and Cyclic Altered Peptide Ligands from Myelin Basic Protein (MBP87−99) Epitope Elicits a Th1 Polarized Response by T Cells Isolated from Multiple Sclerosis Patients: Implications in Triggering Disease. J Med Chem 2008; 51:7834-42. [DOI: 10.1021/jm800891n] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- George Deraos
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Kokona Chatzantoni
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Minos-Timotheos Matsoukas
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Spyros Deraos
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Maria Katsara
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Panagiotis Papathanasopoulos
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Demitrios Vynios
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Vasso Apostolopoulos
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - Athanasia Mouzaki
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| | - John Matsoukas
- Department of Chemistry, University of Patras, Patras 26500, Greece, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26110, Greece, Neurology Clinic, Medical School and University Hospital, University of Patras, Patras 26500, Greece, and Immunology and Vaccine Laboratory, Burnet Institute (Austin Campus), Heidelberg, Victoria 3084, Australia
| |
Collapse
|
11
|
Synthesis and molecular modelling of unsaturated exomethylene pyranonucleoside analogues with antitumor and antiviral activities. Eur J Med Chem 2008; 43:1366-75. [DOI: 10.1016/j.ejmech.2007.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 10/12/2007] [Indexed: 11/17/2022]
|
12
|
Mantzourani ED, Blokar K, Tselios TV, Matsoukas JM, Platts JA, Mavromoustakos TM, Grdadolnik SG. A combined NMR and molecular dynamics simulation study to determine the conformational properties of agonists and antagonists against experimental autoimmune encephalomyelitis. Bioorg Med Chem 2008; 16:2171-82. [DOI: 10.1016/j.bmc.2007.11.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 11/30/2007] [Indexed: 11/26/2022]
|
13
|
Spyranti Z, Dalkas GA, Spyroulias GA, Mantzourani ED, Mavromoustakos T, Friligou I, Matsoukas JM, Tselios TV. Putative Bioactive Conformations of Amide Linked Cyclic Myelin Basic Protein Peptide Analogues Associated with Experimental Autoimmune Encephalomyelitis. J Med Chem 2007; 50:6039-47. [DOI: 10.1021/jm070770m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zinovia Spyranti
- Departments of Pharmacy and Chemistry, University of Patras, GR-26504 Patras, Greece, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Georgios A. Dalkas
- Departments of Pharmacy and Chemistry, University of Patras, GR-26504 Patras, Greece, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Georgios A. Spyroulias
- Departments of Pharmacy and Chemistry, University of Patras, GR-26504 Patras, Greece, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Efthimia D. Mantzourani
- Departments of Pharmacy and Chemistry, University of Patras, GR-26504 Patras, Greece, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Thomas Mavromoustakos
- Departments of Pharmacy and Chemistry, University of Patras, GR-26504 Patras, Greece, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Irene Friligou
- Departments of Pharmacy and Chemistry, University of Patras, GR-26504 Patras, Greece, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - John M. Matsoukas
- Departments of Pharmacy and Chemistry, University of Patras, GR-26504 Patras, Greece, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Theodore V. Tselios
- Departments of Pharmacy and Chemistry, University of Patras, GR-26504 Patras, Greece, and Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, GR-11635 Athens, Greece
| |
Collapse
|
14
|
Mantzourani ED, Tselios TV, Grdadolnik SG, Platts JA, Brancale A, Deraos GN, Matsoukas JM, Mavromoustakos TM. Comparison of Proposed Putative Active Conformations of Myelin Basic Protein Epitope 87−99 Linear Altered Peptide Ligands by Spectroscopic and Modelling Studies: The Role of Positions 91 and 96 in T-Cell Receptor Activation. J Med Chem 2006; 49:6683-91. [PMID: 17154499 DOI: 10.1021/jm060040z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work proposes a structural motif for the inhibition of experimental autoimmune encephalomyelitis (EAE) by the linear altered peptide ligands (APLs) [Ala91,96] MBP87-99 and [Arg91,Ala96] MBP87-99 of myelin basic protein. Molecular dynamics was applied to reveal distinct populations of EAE antagonist [Ala91,96] MBP87-99 in solution, in agreement with NOE data. The combination of the theoretical and experimental results led to the identification of a putative active conformation. This approach is of value as no crystallographic data is available for the APL-receptor complex. TCR contact residue Phe89 has an altered topology in the putative bioactive conformations of both APLs with respect to the native peptide, as found via crystallography; it is no longer prominent and solvent exposed. It is proposed that the antagonistic activity of the APLs is due to their binding to MHC, preventing the binding of self-myelin epitopes, with the absence of an immunologic response as the loss of some interactions with the TCR hinders activation of T-cells.
Collapse
Affiliation(s)
- Efthimia D Mantzourani
- National Hellenic Research Foundation, Institute of Organic and Pharmaceutical Chemistry, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|