1
|
Wych DC, Wall ME. Molecular-dynamics simulations of macromolecular diffraction, part I: Preparation of protein crystal simulations. Methods Enzymol 2023; 688:87-114. [PMID: 37748833 DOI: 10.1016/bs.mie.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Molecular-dynamics (MD) simulations of protein crystals enable the prediction of structural and dynamical features of both the protein and the solvent components of macromolecular crystals, which can be validated against diffraction data from X-ray crystallographic experiments. The simulations have been useful for studying and predicting both Bragg and diffuse scattering in protein crystallography; however, the preparation is not yet automated and includes choices and tradeoffs that can impact the results. Here we examine some of the intricacies and consequences of the choices involved in setting up MD simulations of protein crystals for the study of diffraction data, and provide a recipe for preparing the simulations, packaged in an accompanying Jupyter notebook. This article and the accompanying notebook are intended to serve as practical resources for researchers wishing to put these models to work.
Collapse
Affiliation(s)
- David C Wych
- Computer, Computational and Statistical Sciences Division, Los Alamos, NM, United States; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Michael E Wall
- Computer, Computational and Statistical Sciences Division, Los Alamos, NM, United States.
| |
Collapse
|
2
|
HIV-1 mutants expressing B cell clonogenic matrix protein p17 variants are increasing their prevalence worldwide. Proc Natl Acad Sci U S A 2022; 119:e2122050119. [PMID: 35763571 PMCID: PMC9271197 DOI: 10.1073/pnas.2122050119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In the combined antiretroviral therapy era, lymphomas still represent the most frequent cause of death in HIV-1-infected patients. We expand previous observations dealing with the prevalence of HIV-1 matrix protein p17 variants (vp17s), characterized by peculiar amino acid insertions and endowed of B cell clonogenic activity, in HIV-1 patients with lymphoma as compared with patients without lymphoma. We show that the prevalence of HIV-1 mutants expressing vp17s is increasing worldwide over time. Moreover, we describe a cluster of HIV-1 mutants expressing a B cell clonogenic vp17 and highlight that insertions can be fixed and that viruses displaying clonogenic vp17s are actively spreading. This knowledge advocates for an extensive genomic surveillance program to monitor the evolution of such mutant virions worldwide. AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)–infected patients. In particular, non-Hodgkin’s lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1–infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1–infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.
Collapse
|
3
|
Bugatti A, Paiardi G, Urbinati C, Chiodelli P, Orro A, Uggeri M, Milanesi L, Caruso A, Caccuri F, D'Ursi P, Rusnati M. Heparin and heparan sulfate proteoglycans promote HIV-1 p17 matrix protein oligomerization: computational, biochemical and biological implications. Sci Rep 2019; 9:15768. [PMID: 31673058 PMCID: PMC6823450 DOI: 10.1038/s41598-019-52201-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
p17 matrix protein released by HIV+ cells interacts with leukocytes heparan sulfate proteoglycans (HSPGs), CXCR1 and CXCR2 exerting different cytokine-like activities that contribute to AIDS pathogenesis. Since the bioactive form of several cytokines is represented by dimers/oligomers and oligomerization is promoted by binding to heparin or HSPGs, here we evaluated if heparin/HSPGs also promote p17 oligomerization. Heparin favours p17 dimer, trimer and tetramer assembly, in a time- and biphasic dose-dependent way. Heparin-induced p17 oligomerization is of electrostatic nature, being it prevented by NaCl, by removing negative sulfated groups of heparin and by neutralizing positive lysine residues in the p17 N-terminus. A new computational protocol has been implemented to study heparin chains up to 24-mer accommodating a p17 dimer. Molecular dynamics show that, in the presence of heparin, two p17 molecules undergo conformational modifications creating a continuous “electropositive channel” in which heparin sulfated groups interact with p17 basic amino acids, promoting its dimerization. At the cell surface, HSPGs induce p17 oligomerization, as demonstrated by using B-lymphoblastoid Namalwa cells overexpressing the HSPG Syndecan-1. Also, HSPGs on the surface of BJAB and Raji human B-lymphoblastoid cells are required to p17 to induce ERK1/2 activation, suggesting that HS-induced oligomerization plays a role in p17-induced lymphoid dysregulation during AIDS.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Giulia Paiardi
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Chiara Urbinati
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Matteo Uggeri
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Luciano Milanesi
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy.
| | - Marco Rusnati
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Zeinolabediny Y, Caccuri F, Colombo L, Morelli F, Romeo M, Rossi A, Schiarea S, Ciaramelli C, Airoldi C, Weston R, Donghui L, Krupinski J, Corpas R, García-Lara E, Sarroca S, Sanfeliu C, Slevin M, Caruso A, Salmona M, Diomede L. HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders. Sci Rep 2017; 7:10313. [PMID: 28871125 PMCID: PMC5583282 DOI: 10.1038/s41598-017-10875-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) remains an important neurological manifestation that adversely affects a patient’s quality of life. HIV-1 matrix protein p17 (p17) has been detected in autoptic brain tissue of HAND individuals who presented early with severe AIDS encephalopathy. We hypothesised that the ability of p17 to misfold may result in the generation of toxic assemblies in the brain and may be relevant for HAND pathogenesis. A multidisciplinary integrated approach has been applied to determine the ability of p17 to form soluble amyloidogenic assemblies in vitro. To provide new information into the potential pathogenic role of soluble p17 species in HAND, their toxicological capability was evaluated in vivo. In C. elegans, capable of recognising toxic assemblies of amyloidogenic proteins, p17 induces a specific toxic effect which can be counteracted by tetracyclines, drugs able to hinder the formation of large oligomers and consequently amyloid fibrils. The intrahippocampal injection of p17 in mice reduces their cognitive function and induces behavioral deficiencies. These findings offer a new way of thinking about the possible cause of neurodegeneration in HIV-1-seropositive patients, which engages the ability of p17 to form soluble toxic assemblies.
Collapse
Affiliation(s)
- Yasmin Zeinolabediny
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Federica Morelli
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Alessandro Rossi
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Silvia Schiarea
- Department of Environmental Health Sciences, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnologies and Biosciences, University of Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnologies and Biosciences, University of Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| | - Ria Weston
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Liu Donghui
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Jerzy Krupinski
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.,Hospital Universitari Mútua de Terrassa, Department of Neurology, Terrassa, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Elisa García-Lara
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain.,University of Medicine and Pharmacy, Targu Mures, Romania
| | - Sara Sarroca
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Mark Slevin
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.,University of Medicine and Pharmacy, Targu Mures, Romania.,Department of Pathology/Medicine, Griffith University, Brisbane, Australia
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy.
| |
Collapse
|
5
|
A single amino acid substitution confers B-cell clonogenic activity to the HIV-1 matrix protein p17. Sci Rep 2017; 7:6555. [PMID: 28747658 PMCID: PMC5529431 DOI: 10.1038/s41598-017-06848-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Recent data highlight the presence, in HIV-1-seropositive patients with lymphoma, of p17 variants (vp17s) endowed with B-cell clonogenicity, suggesting a role of vp17s in lymphomagenesis. We investigated the mechanisms responsible for the functional disparity on B cells between a wild-type p17 (refp17) and a vp17 named S75X. Here, we show that a single Arginine (R) to Glycine (G) mutation at position 76 in the refp17 backbone (p17R76G), as in the S75X variant, is per se sufficient to confer a B-cell clonogenic potential to the viral protein and modulate, through activation of the PTEN/PI3K/Akt signaling pathway, different molecules involved in apoptosis inhibition (CASP-9, CASP-7, DFF-45, NPM, YWHAZ, Src, PAX2, MAPK8), cell cycle promotion and cancer progression (CDK1, CDK2, CDK8, CHEK1, CHEK2, GSK-3 beta, NPM, PAK1, PP2C-alpha). Moreover, the only R to G mutation at position 76 was found to strongly impact on protein folding and oligomerization by altering the hydrogen bond network. This generates a conformational shift in the p17 R76G mutant which enables a functional epitope(s), masked in refp17, to elicit B-cell growth-promoting signals after its interaction with a still unknown receptor(s). Our findings offer new opportunities to understand the molecular mechanisms accounting for the B-cell growth-promoting activity of vp17s.
Collapse
|
6
|
Konagaya Y, Miyakawa R, Sato M, Matsugami A, Watanabe S, Hayashi F, Kigawa T, Nishimura C. Effect of Glu12-His89 Interaction on Dynamic Structures in HIV-1 p17 Matrix Protein Elucidated by NMR. PLoS One 2016; 11:e0167176. [PMID: 27907055 PMCID: PMC5132258 DOI: 10.1371/journal.pone.0167176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
To test the existence of the salt bridge and stability of the HIV-1 p17 matrix protein, an E12A (mutated at helix 1) was established to abolish possible electrostatic interactions. The chemical shift perturbation from the comparison between wild type and E12A suggested the existence of an electrostatic interaction in wild type between E12 and H89 (located in helix 4). Unexpectedly, the studies using urea denaturation indicated that the E12A substitution slightly stabilized the protein. The dynamic structure of E12A was examined under physiological conditions by both amide proton exchange and relaxation studies. The quick exchange method of amide protons revealed that the residues with faster exchange were located at the mutated region, around A12, compared to those of the wild-type protein. In addition, some residues at the region of helix 4, including H89, exhibited faster exchange in the mutant. In contrast, the average values of the kinetic rate constants for amide proton exchange for residues located in all loop regions were slightly lower in E12A than in wild type. Furthermore, the analyses of the order parameter revealed that less flexible structures existed at each loop region in E12A. Interestingly, the structures of the regions including the alpha1-2 loop and helix 5 of E12A exhibited more significant conformational exchanges with the NMR time-scale than those of wild type. Under lower pH conditions, for further destabilization, the helix 1 and alpha2-3 loop in E12A became more fluctuating than at physiological pH. Because the E12A mutant lacks the activities for trimer formation on the basis of the analytical ultra-centrifuge studies on the sedimentation distribution of p17 (Fledderman et al. Biochemistry 49, 9551–9562, 2010), it is possible that the changes in the dynamic structures induced by the absence of the E12-H89 interaction in the p17 matrix protein contributes to a loss of virus assembly.
Collapse
Affiliation(s)
- Yuta Konagaya
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Rina Miyakawa
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Masumi Sato
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Akimasa Matsugami
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Satoru Watanabe
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center, Yokohama, Kanagawa, Japan
| | - Fumiaki Hayashi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Takanori Kigawa
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center, Yokohama, Kanagawa, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Caccuri F, Iaria ML, Campilongo F, Varney K, Rossi A, Mitola S, Schiarea S, Bugatti A, Mazzuca P, Giagulli C, Fiorentini S, Lu W, Salmona M, Caruso A. Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17. Sci Rep 2016; 6:38027. [PMID: 27905556 PMCID: PMC5131311 DOI: 10.1038/srep38027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022] Open
Abstract
The human immune deficiency virus type 1 (HIV-1) matrix protein p17 (p17), although devoid of a signal sequence, is released by infected cells and detected in blood and in different organs and tissues even in HIV-1-infected patients undergoing successful combined antiretroviral therapy (cART). Extracellularly, p17 deregulates the function of different cells involved in AIDS pathogenesis. The mechanism of p17 secretion, particularly during HIV-1 latency, still remains to be elucidated. A recent study showed that HIV-1-infected cells can produce Gag without spreading infection in a model of viral latency. Here we show that in Gag-expressing cells, secretion of biologically active p17 takes place at the plasma membrane and occurs following its interaction with phosphatidylinositol-(4,5)-bisphosphate and its subsequent cleavage from the precursor Gag (Pr55Gag) operated by cellular aspartyl proteases. These enzymes operate a more complex Gag polypeptide proteolysis than the HIV-1 protease, thus hypothetically generating slightly truncated or elongated p17s in their C-terminus. A 17 C-terminal residues excised p17 was found to be structurally and functionally identical to the full-length p17 demonstrating that the final C-terminal region of p17 is irrelevant for the protein’s biological activity. These findings offer new opportunities to identify treatment strategies for inhibiting p17 release in the extracellular microenvironment.
Collapse
Affiliation(s)
- Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Maria Luisa Iaria
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Federica Campilongo
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Kristen Varney
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alessandro Rossi
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Silvia Schiarea
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Antonella Bugatti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Pietro Mazzuca
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Cinzia Giagulli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Simona Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Mario Salmona
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| |
Collapse
|
8
|
The good, the bad and the user in soft matter simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2529-2538. [PMID: 26862882 DOI: 10.1016/j.bbamem.2016.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/21/2022]
Abstract
Molecular dynamics (MD) simulations have become popular in materials science, biochemistry, biophysics and several other fields. Improvements in computational resources, in quality of force field parameters and algorithms have yielded significant improvements in performance and reliability. On the other hand, no method of research is error free. In this review, we discuss a few examples of errors and artifacts due to various sources and discuss how to avoid them. Besides bringing attention to artifacts and proper practices in simulations, we also aim to provide the reader with a starting point to explore these issues further. In particular, we hope that the discussion encourages researchers to check software, parameters, protocols and, most importantly, their own practices in order to minimize the possibility of errors. The focus here is on practical issues. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
9
|
Fauth EVF, Cilli EM, Ligabue-Braun R, Verli H. Differential effect of solution conditions on the conformation of the actinoporins Sticholysin II and Equinatoxin II. AN ACAD BRAS CIENC 2015; 86:1949-62. [PMID: 25590731 DOI: 10.1590/0001-3765201420140270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/11/2014] [Indexed: 11/22/2022] Open
Abstract
Actinoporins are a family of pore-forming proteins with hemolytic activity. The structural basis for such activity appears to depend on their correct folding. Such folding encompasses a phosphocholine binding site, a tryptophan-rich region and the activity-related N-terminus segment. Additionally, different solution conditions are known to be able to influence the pore formation by actinoporins, as for Sticholysin II (StnII) and Equinatoxin II (EqtxII). In this context, the current work intends to characterize the influence of distinct solution conditions in the conformational behavior of these proteins through molecular dynamics (MD) simulations. The obtained data offer structural insights into actinoporins dynamics in solution, characterizing its conformational behavior at the atomic level, in accordance with previous experimental data on StnII and EqtxII hemolytic activities.
Collapse
Affiliation(s)
| | - Eduardo M Cilli
- Departamento de Bioquímica e Tecnologia Química, UNESP, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | | | - Hugo Verli
- Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brasil
| |
Collapse
|
10
|
Detection of HIV-1 matrix protein p17 quasispecies variants in plasma of chronic HIV-1-infected patients by ultra-deep pyrosequencing. J Acquir Immune Defic Syndr 2014; 66:332-9. [PMID: 24732873 DOI: 10.1097/qai.0000000000000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The HIV-1 matrix protein p17 (p17MA) is a pleiotropic protein that plays a key role in the HIV-1 life cycle. It has been long believed to have a highly conserved primary amino acid sequence and a well-preserved structural integrity to avoid severe fitness consequences. However, recent data revealed that the carboxy (COOH)-terminus of p17MA possesses high levels of predicted intrinsic disorder, which would subtend to at least partially unfolded status of this region. This finding pointed to the need of investigating p17MA heterogeneity. METHODS The degree of intrapatient variations in the p17MA primary sequence was assessed on plasma viral RNA by using ultra-deep pyrosequencing. RESULTS Data obtained support a complex nature of p17MA quasispecies, with variants present at variable frequency virtually in all patients. Clusters of mutations were scattered along the entire sequence of the viral protein, but they were more frequently detected within the COOH-terminal region of p17MA. Moreover, deletions and insertions also occurred in a restricted area of the COOH-terminal region. CONCLUSIONS On the whole, our data show that the intrapatient level of sequence diversity in the p17MA is much higher than predicted before. Our results pave the way for further studies aimed at unraveling possible correlations between the presence of distinct p17MA variants and peculiar clinical evolutions of HIV-1 disease. The presence of p17MA quasispecies diversity may offer new tools to improve our understanding of the viral adaptation during the natural history of HIV-1 infection.
Collapse
|
11
|
Selective acquisition of host-derived ICAM-1 by HIV-1 is a matrix-dependent process. J Virol 2014; 89:323-36. [PMID: 25320314 DOI: 10.1128/jvi.02701-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED HIV-1 acquires an impressive number of foreign components during its formation. Despite all previous efforts spent studying the nature and functionality of virus-anchored host molecules, the exact mechanism(s) through which such constituents are acquired by HIV-1 is still unknown. However, in the case of ICAM-1, one of the most extensively studied transmembrane proteins found associated with mature virions, the Pr55(Gag) precursor polyprotein appears to be a potential interaction partner. We investigated and characterized at the molecular level the process of ICAM-1 incorporation using initially a Pr55(Gag)-based virus-like particle (VLP) model. Substitution of various domains of Pr55(Gag), such as the nucleocapsid, SP2, or p6, had no effect on the acquisition of ICAM-1. We found that the structural matrix protein (MA) is mandatory for ICAM-1 incorporation within VLPs, and we confirmed this novel observation with the replication-competent HIV-1 molecular clone NL4.3. Additional studies suggest that the C-terminal two-thirds of MA, and especially 13 amino acids positioned inside the fifth α-helix, are important. Moreover, based on three-dimensional (3D) modeling of protein-protein interactions (i.e., protein-protein docking) and further validation by a virus capture assay, we found that a series of acidic residues in the MA domain interact with basic amino acids located in the ICAM-1 cytoplasmic tail. Our findings provide new insight into the molecular mechanism governing the acquisition of ICAM-1, a host molecule known to enhance HIV-1 infectivity in a significant manner. Altogether, these observations offer a new avenue for the development of antiviral therapeutics that are directed at a target of host origin. IMPORTANCE Intercellular adhesion molecule 1 (ICAM-1) is a cell surface host component known to be efficiently inserted within emerging HIV-1 particles. It has been demonstrated that host-derived ICAM-1 molecules act as a strong attachment factor and increase HIV-1 infectivity substantially. Despite previous efforts spent studying virus-associated host molecules, the precise mechanism(s) through which such constituents are inserted within emerging HIV-1 particles still remains obscure. Previous data suggest that the Pr55(Gag) precursor polyprotein appears as a potential interaction partner with ICAM-1. In the present study, we demonstrate that the HIV-1 matrix domain plays a key role in the ICAM-1 incorporation process. Some observations were confirmed with whole-virus preparations amplified in primary human cells, thereby providing physiological significance to our data.
Collapse
|
12
|
Simian immunodeficiency virus and human immunodeficiency virus type 1 matrix proteins specify different capabilities to modulate B cell growth. J Virol 2014; 88:5706-17. [PMID: 24623414 DOI: 10.1128/jvi.03142-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Exogenous HIV-1 matrix protein p17 (p17) deregulates the function of different cells after its N-terminal loop (AT20) binding to the chemokine receptors CXCR1 and CXCR2. One site within AT20 has been recently found to be the major determinant of viral fitness following transmission of simian immunodeficiency virus (SIV) to the human host. Therefore, we sought to determine whether SIV matrix protein (MA) was already capable of interacting with CXCR1 and CXCR2 and mimic p17 biological activities rather than this being a newly acquired function during host adaptation. We show here that SIV MA binds with the same affinity of p17 to CXCR1 and CXCR2 and displays both p17 proangiogenic on human primary endothelial cells and chemotactic activity on human primary monocytes and B cells. However, SIV MA exhibited a higher degree of plasticity than p17 in the C terminus, a region known to play a role in modulating B cell growth. Indeed, in contrast to p17, SIV MA was found to activate the phosphatidylinositol 3-kinase/Akt signaling pathway and strongly promote B cell proliferation and clonogenic activity. Interestingly, we have recently highlighted the existence of a Ugandan HIV-1 strain-derived p17 variant (S75X) with the same B cell growth-promoting activity of SIV MA. Computational modeling allowed us to hypothesize an altered C terminus/core region interaction behind SIV MA and S75X activity. Our findings suggest the appearance of a structural constraint in the p17 C terminus that controls B cell growth, which may help to elucidate the evolutionary trajectory of HIV-1. IMPORTANCE The HIV-1 matrix protein p17 (p17) deregulates the biological activities of different cells after binding to the chemokine receptors CXCR1 and CXCR2. The p17 functional domain responsible for receptors interaction includes an amino acid which is considered the major determinant of SIV replication in humans. Therefore, we sought to determine whether SIV matrix protein (SIV MA) already had the ability to bind to both chemokine receptors rather than being a function newly acquired during host adaptation. We show here that SIV MA binds to CXCR1 and CXCR2 and fully mimics the p17 proangiogenic and chemokine activity. However, it differs from p17 in its ability to signal into B cells and promote B cell growth and clonogenicity. Computational analysis suggests that the accumulation of mutations in the C-terminal region may have led to a further SIV MA adaptation to the human host. This finding in turn sheds light on the evolutionary trajectory of HIV-1.
Collapse
|
13
|
Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:520-6. [PMID: 24373876 DOI: 10.1016/j.bbapap.2013.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 11/22/2022]
Abstract
The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein. The myristyl group attached to the N-terminus on the p17 matrix protein functions as an anchor for binding to the plasma membrane. Biochemical studies revealed that two regions are important for its function: D14-L31 and V84-V88. Here, the dynamic structures of the p17 matrix protein were studied using NMR for relaxation and amide proton exchange experiments at the physiological pH of 7.0. The results revealed that the α12-loop, which includes the 14-31 region, was relatively flexible, and that helix 4, including the 84-88 region, was the most protected helix in this protein. However, the residues in the α34-loop near helix 4 had a low order parameter and high exchange rate of amide protons, indicating high flexibility. This region is probably flexible because this loop functions as a hinge for optimizing the interactions between helices 3 and 4. The C-terminal long region of K113-Y132 adopted a disordered structure. Furthermore, the C-terminal helix 5 appeared to be slightly destabilized due to the flexible C-terminal tail based on the order parameters. Thus, the dynamic structure of the p17 matrix protein may be related to its multiple functions.
Collapse
|
14
|
Zentner I, Sierra LJ, Maciunas L, Vinnik A, Fedichev P, Mankowski MK, Ptak RG, Martín-García J, Cocklin S. Discovery of a small-molecule antiviral targeting the HIV-1 matrix protein. Bioorg Med Chem Lett 2012; 23:1132-5. [PMID: 23305922 DOI: 10.1016/j.bmcl.2012.11.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 01/03/2023]
Abstract
Due to the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The HIV-1 matrix (MA) protein is an essential viral component with established roles in the assembly of the virus. Using virtual and surface plasmon resonance (SPR)-based screening, we describe the identification of the first small molecule to bind to the HIV-1 MA protein and to possess broad range anti-HIV properties.
Collapse
Affiliation(s)
- Isaac Zentner
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Defective HIV-1 particle assembly in AP-3-deficient cells derived from patients with Hermansky-Pudlak syndrome type 2. J Virol 2012; 86:11242-53. [PMID: 22875976 DOI: 10.1128/jvi.00544-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adaptor protein complex 3 (AP-3) is a heterotetramer that is involved in signal-mediated protein sorting to endosomal-lysosomal organelles. AP-3 deficiency in humans, induced by mutations in the AP3B1 gene, which encodes the β3A subunit of the AP-3 complex, results in Hermansky-Pudlak syndrome 2 (HPS2), which is a rare genetic disorder with defective lysosome-related organelles. In a previous study, we identified the AP-3 complex as an important contributor to HIV-1 assembly and release. We hypothesized that cells from patients affected by HPS2 should demonstrate abnormalities of HIV-1 assembly. Here we report that HIV-1 particle assembly and release are indeed diminished in HPS2 fibroblast cultures. Transient or stable expression of the full-length wild-type β3A subunit in HPS2 fibroblasts restored the impaired virus assembly and release. In contrast, virus-like particle release mediated by MA-deficient Gag mutants lacking the AP-3 binding site was not altered in HPS2 cells, indicating that the MA domain serves as the major viral determinant required for the recruitment of the AP-3 complex. AP-3 deficiency decreased HIV-1 Gag localization at the plasma membrane and late endosomes and increased the accumulation of HIV-1 Gag at an intermediate step between early and late endosomes. Blockage of the clathrin-mediated endocytic pathway in HPS2 cells did not reverse the inhibited virus assembly and release imposed by the AP-3 deficiency. These results demonstrate that the intact and stable AP-3 complex is required for HIV-1 assembly and release, and the involvement of the AP-3 complex in late stages of the HIV-1 replication cycle is independent of clathrin-mediated endocytosis.
Collapse
|
16
|
Yesylevskyy SO. Pteros: Fast and easy to use open-source C++ library for molecular analysis. J Comput Chem 2012; 33:1632-6. [DOI: 10.1002/jcc.22989] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/08/2012] [Accepted: 03/21/2012] [Indexed: 11/06/2022]
|
17
|
De Francesco MA, Baronio M, Poiesi C. HIV-1 p17 matrix protein interacts with heparan sulfate side chain of CD44v3, syndecan-2, and syndecan-4 proteoglycans expressed on human activated CD4+ T cells affecting tumor necrosis factor alpha and interleukin 2 production. J Biol Chem 2011; 286:19541-8. [PMID: 21482826 DOI: 10.1074/jbc.m110.191270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HIV-1 p17 contains C- and N-terminal sequences with positively charged residues and a consensus cluster for heparin binding. We have previously demonstrated by affinity chromatography that HIV-1 p17 binds strongly to heparin-agarose at physiological pH and to human activated CD4(+) T cells. In this study we demonstrated that the viral protein binds to heparan sulfate side chains of syndecan-2, syndecan-4, and CD44v3 purified from HeLa cells and that these heparan sulfate proteoglycans (HSPGs) co-localize with HIV-1 p17 on activated human CD4(+) T cells by confocal fluorescence analysis. Moreover, we observed a stimulatory or inhibitory activity when CD4(+) T cells were activated with mitogens together with nanomolar or micromolar concentrations of the matrix protein.
Collapse
|
18
|
Giagulli C, Marsico S, Magiera AK, Bruno R, Caccuri F, Barone I, Fiorentini S, Andò S, Caruso A. Opposite effects of HIV-1 p17 variants on PTEN activation and cell growth in B cells. PLoS One 2011; 6:e17831. [PMID: 21423810 PMCID: PMC3056727 DOI: 10.1371/journal.pone.0017831] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/15/2011] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 matrix protein p17 is a structural protein that can act in the extracellular environment to deregulate several functions of immune cells, through the interaction of its NH(2)-terminal region with a cellular surface receptor (p17R). The intracellular events triggered by p17/p17R interaction have been not completely characterized yet. In this study we analyze the signal transduction pathways induced by p17/p17R interaction and show that in Raji cells, a human B cell line stably expressing p17R on its surface, p17 induces a transient activation of the transcriptional factor AP-1. Moreover, it was found to upregulate pERK1/2 and downregulate pAkt, which are the major intracellular signalling components involved in AP-1 activation. These effects are mediated by the COOH-terminal region of p17, which displays the capability of keeping PTEN, a phosphatase that regulates the PI3K/Akt pathway, in an active state through the serine/threonine (Ser/Thr) kinase ROCK. Indeed, the COOH-terminal truncated form of p17 (p17Δ36) induced activation of the PI3K/Akt pathway by maintaining PTEN in an inactive phosphorylated form. Interestingly, we show that among different p17s, a variant derived from a Ugandan HIV-1 strain, named S75X, triggers an activation of PI3K/Akt signalling pathway, and leads to an increased B cell proliferation and malignant transformation. In summary, this study shows the role of the COOH-terminal region in modulating the p17 signalling pathways so highlighting the complexity of p17 binding to and signalling through its receptor(s). Moreover, it provides the first evidence on the presence of a p17 natural variant mimicking the p17Δ36-induced signalling in B cells and displaying the capacity of promoting B cell growth and tumorigenesis.
Collapse
Affiliation(s)
- Cinzia Giagulli
- Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
| | - Stefania Marsico
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Rosalinda Bruno
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Francesca Caccuri
- Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
| | - Ines Barone
- Department of Cell Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Simona Fiorentini
- Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
| | - Sebastiano Andò
- Department of Cell Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Arnaldo Caruso
- Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
19
|
Effect of atom- and group-based truncations on biomolecules simulated with reaction-field electrostatics. J Mol Model 2011; 17:2883-93. [PMID: 21311933 DOI: 10.1007/s00894-011-0975-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
The performance of the reaction-field method of electrostatics is tested in molecular dynamics simulations of protein human interleukin-4 and a short DNA fragment in explicit solvent. Two truncation schemes are considered: one based on the position of atomic charges in water molecules and the other on the position of groups of charges. The group-based truncation leads to the melting of the DNA double helix. In contrast, the atom-based truncation maintains the helical structure intact. Similarly for the protein, the group-based truncation leads to an unfolding at pH 2 while the atom-based truncation produces stable trajectories at low and normal pH, in agreement with experiment. Artificial repulsion between charged residues associated with the group-based truncation is identified as the microscopic reason behind unfolding of the protein. Implications of different truncation schemes in reaction-field simulations of biomolecules are discussed.
Collapse
|
20
|
Míguez JM, González-Salgado D, Legido JL, Piñeiro MM. Calculation of interfacial properties using molecular simulation with the reaction field method: Results for different water models. J Chem Phys 2010. [DOI: 10.1063/1.3422528] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Lima LMTR, Becker CF, Giesel GM, Marques AF, Cargnelutti MT, de Oliveira Neto M, Monteiro RQ, Verli H, Polikarpov I. Structural and thermodynamic analysis of thrombin:suramin interaction in solution and crystal phases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:873-81. [PMID: 19332154 DOI: 10.1016/j.bbapap.2009.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 02/24/2009] [Accepted: 03/09/2009] [Indexed: 11/15/2022]
Abstract
Suramin is a hexasulfonated naphthylurea which has been recently characterized as a non-competitive inhibitor of human alpha-thrombin activity over fibrinogen, although its binding site and mode of interaction with the enzyme remain elusive. Here, we determined two X-ray structure of the thrombin:suramin complex, refined at 2.4 A resolution. While a single thrombin:suramin complex was found in the asymmetric unit cell of the crystal, some of the crystallographic contacts with symmetrically related molecules are mediated by both the enzyme and the ligand. Molecular dynamics simulations with the 1:1 complex demonstrate a large rearrangement of suramin in the complex, but with the protein scaffold and the more extensive protein-ligand regions keep unchanged. Small-angle X-ray scattering measurements at high micromolar concentration demonstrate a suramin-induced dimerization of the enzyme. These data indicating a dissimilar binding mode in the monomeric and oligomeric states, with a monomeric, 1:1 complex to be more likely to exist at the thrombin physiological, nanomolar concentration range. Collectively, close understanding on the structural basis for interaction is given which might establish a basis for design of suramin analogues targeting thrombin.
Collapse
Affiliation(s)
- Luis Maurício T R Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baumketner A. Removing systematic errors in interionic potentials of mean force computed in molecular simulations using reaction-field-based electrostatics. J Chem Phys 2009; 130:104106. [PMID: 19292522 PMCID: PMC2671211 DOI: 10.1063/1.3081138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 01/23/2009] [Indexed: 11/14/2022] Open
Abstract
The performance of reaction-field methods to treat electrostatic interactions is tested in simulations of ions solvated in water. The potential of mean force between sodium chloride pair of ions and between side chains of lysine and aspartate are computed using umbrella sampling and molecular dynamics simulations. It is found that in comparison with lattice sum calculations, the charge-group-based approaches to reaction-field treatments produce a large error in the association energy of the ions that exhibits strong systematic dependence on the size of the simulation box. The atom-based implementation of the reaction field is seen to (i) improve the overall quality of the potential of mean force and (ii) remove the dependence on the size of the simulation box. It is suggested that the atom-based truncation be used in reaction-field simulations of mixed media.
Collapse
Affiliation(s)
- Andrij Baumketner
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28269, USA.
| |
Collapse
|
23
|
Riboldi GP, Verli H, Frazzon J. Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein. BMC BIOCHEMISTRY 2009; 10:3. [PMID: 19187533 PMCID: PMC2644719 DOI: 10.1186/1471-2091-10-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 02/02/2009] [Indexed: 11/10/2022]
Abstract
Background Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein. Results BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed. Conclusion The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested as a possible candidate for interaction with other factors and/or regulators.
Collapse
Affiliation(s)
- Gustavo P Riboldi
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | |
Collapse
|
24
|
Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors. J Virol 2009; 83:3059-68. [PMID: 19176623 DOI: 10.1128/jvi.02539-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an attempt to determine whether mutations in Gag in human immunodeficiency virus type 1 (HIV-1) variants selected with a protease inhibitor (PI) affect the development of resistance to the same or a different PI(s), we generated multiple infectious HIV-1 clones carrying mutated Gag and/or mutated protease proteins that were identified in amprenavir (APV)-selected HIV-1 variants and examined their virological characteristics. In an HIV-1 preparation selected with APV (33 passages, yielding HIV(APVp33)), we identified six mutations in protease and six apparently critical mutations at cleavage and non-cleavage sites in Gag. An infectious recombinant clone carrying the six protease mutations but no Gag mutations failed to replicate, indicating that the Gag mutations were required for the replication of HIV(APVp33). An infectious recombinant clone that carried wild-type protease and a set of five Gag mutations (rHIV(WTpro)(12/75/219/390/409gag)) replicated comparably to wild-type HIV-1; however, when exposed to APV, rHIV(WTpro)(12/75/219/390/409gag) rapidly acquired APV resistance. In contrast, the five Gag mutations significantly delayed the acquisition of HIV-1 resistance to ritonavir and nelfinavir (NFV). Recombinant HIV-1 clones containing NFV resistance-associated mutations, such as D30N and N88S, had increased susceptibilities to APV, suggesting that antiretroviral regimens including both APV and NFV may bring about favorable antiviral efficacy. The present data suggest that the preexistence of certain Gag mutations related to PI resistance can accelerate the emergence of resistance to the PI and delay the acquisition of HIV resistance to other PIs, and these findings should have clinical relevance in the therapy of HIV-1 infection with PI-including regimens.
Collapse
|
25
|
Bukrinskaya A. HIV-1 matrix protein: a mysterious regulator of the viral life cycle. Virus Res 2007; 124:1-11. [PMID: 17210199 DOI: 10.1016/j.virusres.2006.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 01/17/2023]
Abstract
Significant progress has been achieved in the last few years concerning the human immunodeficiency virus (HIV-1) life cycle, mostly in the fields of cellular receptors for the virus, virus assembly and budding of virus particles from the cell surface. Meanwhile, some aspects, such as postentry events, virus maturation and the regulatory role of individual viral proteins remain poorly defined. This review summarizes some recent findings concerning the role of Gag Pr55 and its proteolytic processing in the HIV-1 life cycle with particular emphasis on the functions of matrix protein p17 (MA), the protein which plays a key role in regulation of the early and late steps of viral morphogenesis. Based on our recent observations, the possibility is discussed that two subsets of MA exist, one cleaved from the Gag precursor in the host cell (cMA), and the other cleaved in the virions (vMA). It is suggested that two MA fractions possess diverse functions and are involved in different stages of virus morphogenesis as key regulators of the viral life cycle.
Collapse
Affiliation(s)
- Alissa Bukrinskaya
- D.I.Ivanovsky Institute of Virology, Russian Academy of Medical Sciences, Moscow 123098, RF, Russia.
| |
Collapse
|