1
|
Benghanem S, Mesli F, Fatima Zohra HA, Nacereddine C, Hadjer C, Abdellatif M. Discovery of novel and highly potential inhibitors of glycogen synthase kinase 3-beta (GSK-3β) through structure-based pharmacophore modeling, virtual computational screening, docking and in silico ADMET analysis. J Biomol Struct Dyn 2024; 42:7091-7106. [PMID: 37498130 DOI: 10.1080/07391102.2023.2238062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
The protein Glycogen Synthase Kinase 3-Beta (GSK-3β), is a promising therapeutic target for treating various diseases such as neurodegenerative disorders, diabetes, inflammation and cancer. This study aims to investigate the potential of compounds targeting inflammation or carbohydrate metabolism to selectively inhibit GSK3β by binding to its ATP site. To achieve this goal, we filtered a database of 49367 molecules involved in carbohydrate metabolism or targeting inflammation using various computational analyses, including pharmacophore modeling, molecular docking, dynamic simulation, prime MM-GBSA calculation, and in silico ADME studies. We generated a pharmacophore model (hypo S: AADDHRR) using two different crystallographic complexes of GSK3β and evaluated the model's performance in identifying hits using various parameters, including EF, GH, ROC, AUC and BEDROC. Subsequently, we performed various dockings (HTVS, SP, XP and IFD) for the retrieved hits and found that, 5 out of the top 10 ranked compounds had the scaffold of pyrazolidine 3,5-dione, which has never been reported to inhibit kinases. We also conducted ADMET studies to and concluded that compound N6 exhibited the best pharmacokinetic profile passing the blood-brain barrier, possessing high lipophilicity and a high coefficient of skin permeability in the intestines, along with good bioavailability and low toxicity risk assessment. Dynamic simulation were also performed indicating that compounds N6 derived from pyrazolidine 3,5-dione demonstrated better binding potential for GSK3β during the simulation period. Therefore, we propose that compounds derived from pyrazolidine-3,5-dione, which modulate the activity of lysosomal alpha-glucosidase could serve as a novel scaffold for the selective inhibition of GSK-3β.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumia Benghanem
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | - Fouzia Mesli
- Faculty of Science, Laboratory of Natural and Bio-Actives Substances, Tlemcen University, Tlemcen, Algeria
| | - Hadjadj Aoul Fatima Zohra
- Faculty of Pharmacy, Laboratory of Therapeutic Chemistry, Benyoucef Benkhadda University, Tlemcen, Algeria
| | - Chaida Nacereddine
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | - Chenaffa Hadjer
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | | |
Collapse
|
2
|
Siudem P, Szeleszczuk Ł, Paradowska K. Searching for Natural Aurora a Kinase Inhibitors from Peppers Using Molecular Docking and Molecular Dynamics. Pharmaceuticals (Basel) 2023; 16:1539. [PMID: 38004405 PMCID: PMC10674409 DOI: 10.3390/ph16111539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Natural products are the precursors of many medicinal substances. Peppers (Piper, Capsicum, Pimienta) are a rich source of compounds with potential multidirectional biological activity. One of the studied directions is antitumor activity. Little research has been carried out so far on the ability of the compounds contained in peppers to inhibit the activity of Aurora A kinase, the overexpression of which is characteristic of cancer development. In this study, molecular docking methods, as well as molecular dynamics, were used, looking for compounds that could inhibit the activity of Aurora A kinase and trying to determine whether there is a relationship between the stimulation of the TRPV1 receptor and the inhibition of Aurora A kinase. We compared our results with anticancer activity studied earlier on MCF-7 cell lines (breast cancer cells). Our research indicates that the compounds contained in peppers can inhibit Aurora A. Further in vitro research is planned to confirm the obtained results.
Collapse
Affiliation(s)
- Paweł Siudem
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland; (Ł.S.); (K.P.)
| | | | | |
Collapse
|
3
|
Design, synthesis, and biological evaluation of 2, 4-dichlorophenoxyacetamide chalcone hybrids as potential c-Met kinase inhibitors. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Singh M, Haque MA, Tikhomirov AS, Shchekotikhin AE, Das U, Kaur P. Computational and Biophysical Characterization of Heterocyclic Derivatives of Anthraquinone against Human Aurora Kinase A. ACS OMEGA 2022; 7:39603-39618. [PMID: 36385832 PMCID: PMC9647706 DOI: 10.1021/acsomega.2c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Human Aurora kinase A (AurA) has recently garnered the attention of researchers worldwide as a promising effective mitotic drug target for its involvement in cancer and related inflammatory anomalies. This study has explored the binding affinity of newly identified heteroarene-fused anthraquinone derivatives against AurA. Molecular docking analyses showed that all the heteroanthraquinone compounds bind to AurA with different affinities. Molecular dynamics simulation studies revealed that the compounds maintained relatively stable binding modes in the active site pocket while inducing minimal conformational changes in the AurA structure, interacting with key residues through several noncovalent interactions, including hydrogen bonds. Fluorescence spectroscopy and biolayer interferometry binding assays with synthesized compounds against recombinantly expressed AurA further verified their binding efficacy. Naphthoisatine 3 proved to be the best binder, with compounds anthraimidazole 5 and anthrathiophene 2 showing comparable results. Overall, this study indicates decent binding of heterocyclic derivatives of anthraquinone with the target AurA, which can further be assessed by performing enzymatic assays and cellular studies. The studies also highlight the applicability of the heteroarene-fused anthraquinone scaffold to construct selective and potent inhibitors of Aurora kinases after necessary structural modifications for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Mandeep Singh
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | - Md. Anzarul Haque
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | | | | | - Uddipan Das
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | - Punit Kaur
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| |
Collapse
|
5
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
6
|
Joshi A, Bhojwani H, Wagal O, Begwani K, Joshi U, Sathaye S, Kanchan D. Evaluation of Benzamide-chalcone Derivatives as EGFR/CDK2 inhibitor: Synthesis, in-vitro Inhibition, and Molecular Modeling Studies. Anticancer Agents Med Chem 2021; 22:328-343. [PMID: 33858315 DOI: 10.2174/1871520621666210415091359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND EGFR (Epidermal Growth Factor Receptor) and CDK2 (Cyclin Dependent Kinase 2) are important targets in the treatment of many solid tumors and different ligands of these receptors share many common structural features. OBJECTIVE The study involved synthesis of benzamide-substituted chalcones and determination of their antiproliferative activity as well as preliminary evaluation of EGFR and CDK2 inhibitory potential using both receptor binding and computational methods. METHODS We synthesized 13 benzamide-substituted chalcone derivatives and tested their antiproliferative activity against MCF-7, HT-29 and U373MG cell-lines using Sulforhodamine B Assay. Four compounds were examined for activity against EGFR and CDK2 kinase. The compounds were docked into both EGFR and CDK2 using Glide software. The stability of the interactions for most active compound was evaluated by Molecular Dynamics Simulation using Desmond software. Molecular Docking studies on mutant EGFR (T790M, T790M/L858R, and T790M/C797S) were also carried out. RESULTS From the SRB assay, we concluded that compounds 1g, and 1k were effective in inhibiting the growth of MCF-7 cell line whereas the other compounds were moderately active. Most compounds were either moderately active or inactive on U373 MG and HT-29 cell line. Compounds 1g and 1k showed good inhibitory activity against CDK2 kinase while 1d and 1f were moderately active. Compounds 1d, 1f, 1g, and 1k were moderately active against EGFR kinase. Molecular docking reveals involvement of one hydrogen bond with Met793 in binding with EGFR however; it was not stable during simulation and these compounds bind to the receptor mainly via hydrophobic contacts. This fact also points towards a different orientation of the inhibitor within the active site of EGFR kinase. Binding mode analysis for CDK2 inhibition studies indicate that hydrogen bonding interaction with Lys 33 and Leu83 are important for the activity. These interactions were found to be stable throughout the simulation. Considering the results for wild-type EGFR inhibition, the docking studies on mutants were performed and which indicate that the compounds bind to the mutant EGFR but the amino acid residues involved are similar to the wild-type EGFR and therefore, the selectivity seems to be limited. CONCLUSION These benzamide-substituted chalcone derivatives will be useful as lead molecules for the further development of newer inhibitors of EGFR and/or CDK2 kinases.
Collapse
Affiliation(s)
- Akshada Joshi
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Heena Bhojwani
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Ojas Wagal
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Khushboo Begwani
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Urmila Joshi
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Sadhana Sathaye
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai 400019. India
| | - Divya Kanchan
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| |
Collapse
|
7
|
Chandra A, Goyal N, Qamar I, Singh N. Identification of hot spot residues on serine-arginine protein kinase-1 by molecular dynamics simulation studies. J Biomol Struct Dyn 2020; 39:1579-1587. [DOI: 10.1080/07391102.2020.1734487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nainee Goyal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Zhang Z, Xu Y, Wu J, Shen Y, Cheng H, Xiang Y. Exploration of the selective binding mechanism of protein kinase Aurora A selectivity via a comprehensive molecular modeling study. PeerJ 2019; 7:e7832. [PMID: 31660263 PMCID: PMC6814069 DOI: 10.7717/peerj.7832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background The kinase of Aurora A has been regarded as a promising therapeutic target due to its altered expression in various human cancers. However, given the high similarity of the active binding site of Aurora A to other kinases, designing highly selective inhibitors towards Aurora A remains a challenge. Recently, two potential small-molecule inhibitors named AT9283 and Danusertib were reported to exhibit significant selectivity to Aurora A, but not to Gleevec. It was argued that protein dynamics is crucial for drug selectivity to Aurora A. However, little computational research has been conducted to shed light on the underlying mechanisms. Methods In this study, MM/GBSA calculations based on conventional molecular dynamics (cMD) simulations and enhanced sampling simulations including Gaussian accelerated MD (GaMD) simulations and umbrella sampling were carried out to illustrate the selectivity of inhibitors to Aurora A. Results The calculation results from cMD simulation showed that the binding specificity is primarily controlled by conformational change of the kinase hinge. The protein dynamics and energetic differences were further supported by the GaMD simulations. Umbrella sampling further proved that AT9283 and Danusertib have similar potential of mean force (PMF) profiles toward Aurora A in terms of PMF depth. Compared with AT9283 and Danusertib, Gleevec has much lower PMF depth, indicating that Gleevec is more easily dissociated from Aurora A than AT9283 and Danusertib. These results not only show the selective determinants of Aurora A, but also provide valuable clues for the further development of novel potent Aurora A selective inhibitors.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Surgery, Clinical Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yafei Xu
- Department of Orthopedics, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Jian Wu
- Department of Orthopedics, Xianning Central Hospital, Xianning, Hubei, China
| | - Ying Shen
- Department of Public Health, Xianning Central Hospital, Xianning, Hubei, China
| | - Hao Cheng
- Department of Surgery, Clinical Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yiming Xiang
- Department of Surgery, Second Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
9
|
Chen K, Duan W, Han Q, Sun X, Li W, Hu S, Wan J, Wu J, Ge Y, Liu D. Identification of the hot spot residues for pyridine derivative inhibitor CCT251455 and ATP substrate binding on monopolar spindle 1 (MPS1) kinase by molecular dynamic simulation. J Biomol Struct Dyn 2018; 37:611-622. [PMID: 29380674 DOI: 10.1080/07391102.2018.1433552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinase monopolar spindle 1 plays an important role in spindle assembly checkpoint at the onset of mitosis. Over expression of MPS1 correlated with a wide range of human tumors makes it an attractive target for finding an effective and specific inhibitor. In this work, we performed molecular dynamics simulations of protein MPS1 itself as well as protein bound systems with the inhibitor and natural substrate based on crystal structures. The reported orally bioavailable 1 h-pyrrolo [3,2-c] pyridine inhibitors of MPS1 maintained stable binding in the catalytic site, while natural substrate ATP could not stay. Comparative study of stability and flexibility of three systems reveals position shifting of β-sheet region within the catalytic site, which indicates inhibition mechanism was through stabilizing the β-sheet region. Binding free energies calculated with MM-GB/PBSA method shows different binding affinity for inhibitor and ATP. Finally, interactions between protein and inhibitor during molecular dynamic simulations were measured and counted. Residue Gly605 and Leu654 were suggested as important hot spots for stable binding of inhibitor by molecular dynamic simulation. Our results reveal an important position shifting within catalytic site for non-inhibited proteins. Together with hot spots found by molecular dynamic simulation, the results provide important information of inhibition mechanism and will be referenced for designing novel inhibitors.
Collapse
Affiliation(s)
- Kai Chen
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Wenxiu Duan
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Qianqian Han
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Xuan Sun
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Wenqian Li
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Shuangyun Hu
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Jiajia Wan
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Jiang Wu
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Yushu Ge
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| | - Dan Liu
- a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China , Hefei , 230027 , P. R. China
| |
Collapse
|
10
|
In silico quest of selective naphthyl-based CREBBP bromodomain inhibitor. In Silico Pharmacol 2018; 6:1. [PMID: 30607314 DOI: 10.1007/s40203-018-0038-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/02/2018] [Indexed: 10/17/2022] Open
Abstract
The reader proteins like bromodomains have recently gained increased attentions in the area of epigenetic drug discovery, as they are the potent regulators in gene transcription process. Among the other bromodomains, cAMP response element-binding protein (CREB) binding protein or CREBBP bomodomain involved in various cancer progressions and therefore, efforts to develop specific inhibitors of CREBBP bomodomain are of clinical value. In this study, we tried to identify selective CREBBP bromodomain inhibitor, which was accomplished by using molecular docking, free energy calculation and molecular dynamics (MD) simulation studies, considering a series of naphthyl based compounds. The docking procedure was validated by comparing root mean square deviations (RMSDs) of crystallographic complex to docked complex. Favorable electrostatic interactions with the Arg1173 side chain were considered to attain selectivity for CREBBP bromodomain over other human bromodomain subfamilies. We found that naphthyl-based compounds have greater binding affinities towards the CREBBP bromodomain, and formed non-bonded interactions with various side chain residues that are important for bromodomain inhibition. From detailed investigation by induced fit docking, compound 31 was found to have favorable electrostatic interactions with the Arg1173 side chain by forming conventional hydrogen bonds. This result was further confirmed by analyzing hydrogen bond occupancy and bonding distance during the molecular dynamics simulation. We believe that these findings offer useful insight for the designing of target specific new bromodomain inhibitor and also promote further structure guided synthesis of analogues for identification of potent CREBBP bromodomain inhibitors as well as detailed in vitro and in vivo analyses.
Collapse
|
11
|
Durairaj DR, Shanmughavel P. In Silico Drug Design of Thiolactomycin Derivatives Against Mtb-KasA Enzyme to Inhibit Multidrug Resistance of Mycobacterium tuberculosis. Interdiscip Sci 2017; 11:215-225. [PMID: 28856604 DOI: 10.1007/s12539-017-0257-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/24/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Tuberculosis (TB) is a leading infectious disease which kills a huge number of people every year over a decade, caused by Mycobacterium tuberculosis. The conventional drugs in the market are no longer effective due to the increasing mycobacterial resistance to antibiotics. Hence, the need of finding efficient drugs to solve this multiple drug resistant factor is becoming an immediate issue. The first-line drugs in current practice for the treatment of TB emphasize on mycolic acid, which protects the bacteria from an immune response generated by the host. A key enzyme involved in this mycolic acid biosynthesis, M. tuberculosis beta-ketoacyl-ACP synthase A (MTB-KasA) is a prime candidate in this study. Thiolactomycin is a natural product inhibitor has shown good inhibitory activity against MTB-KasA. Hence, several thiolactomycin derivatives collected from the literature were taken for absorption, distribution, metabolism, excretion and toxicity prediction, molecular docking and molecular dynamics simulation studies with MTB-KasA. The in silico drug designing methods used in this study suggests that the thiolactomycin derivatives are having a better binding activity against MTB-KasA and among them the ligand C14 is identified as a promising lead molecule to inhibit multidrug resistance of tuberculosis by showing a long time binding activity.
Collapse
Affiliation(s)
- D Ruban Durairaj
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India.
| | - P Shanmughavel
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
12
|
Extra precision docking, free energy calculation and molecular dynamics studies on glutamic acid derivatives as MurD inhibitors. Comput Biol Chem 2017; 69:55-63. [DOI: 10.1016/j.compbiolchem.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 04/18/2017] [Accepted: 05/20/2017] [Indexed: 01/28/2023]
|
13
|
Azam MA, Thathan J. Pharmacophore generation, atom-based 3D-QSAR and molecular dynamics simulation analyses of pyridine-3-carboxamide-6-yl-urea analogues as potential gyrase B inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:275-296. [PMID: 28399673 DOI: 10.1080/1062936x.2017.1310131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
DNA gyrase subunit B (GyrB) is an attractive drug target for the development of antibacterial agents with therapeutic potential. In the present study, computational studies based on pharmacophore modelling, atom-based QSAR, molecular docking, free binding energy calculation and dynamics simulation were performed on a series of pyridine-3-carboxamide-6-yl-urea derivatives. A pharmacophore model using 49 molecules revealed structural and chemical features necessary for these molecules to inhibit GyrB. The best fitted model AADDR.13 was generated with a coefficient of determination (r²) of 0.918. This model was validated using test set molecules and had a good r² of 0.78. 3D contour maps generated by the 3D atom-based QSAR revealed the key structural features responsible for the GyrB inhibitory activity. Extra precision molecular docking showed hydrogen bond interactions with key amino acid residues of ATP-binding pocket, important for inhibitor binding. Further, binding free energy was calculated by the MM-GBSA rescoring approach to validate the binding affinity. A 10 ns MD simulation of inhibitor #47 showed the stability of the predicted binding conformations. We identified 10 virtual hits by in silico high-throughput screening. A few new molecules were also designed as potent GyrB inhibitors. The information obtained from these methodologies may be helpful to design novel inhibitors of GyrB.
Collapse
Affiliation(s)
- M A Azam
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Sivarathreeswara University, Mysuru) , Tamil Nadu , India
| | - J Thathan
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Sivarathreeswara University, Mysuru) , Tamil Nadu , India
| |
Collapse
|
14
|
Selvaraman N, Selvam SK, Muthusamy K. The Binding Mode Prediction and Similar Ligand Potency in the Active Site of Vitamin D Receptor with QM/MM Interaction, MESP, and MD Simulation. Chem Biol Drug Des 2016; 88:272-80. [PMID: 26945790 DOI: 10.1111/cbdd.12754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 01/25/2023]
Abstract
Non-secosteroidal ligands are well-known vitamin D receptor (VDR) agonists. In this study, we described a combined QM/MM to define the protein-ligand interaction energy a strong positive correlation in both QM-MM interaction energy and binding free energy against the biological activity. The molecular dynamics simulation study was performed, and specific interactions were extensively studied. The molecular docking results and surface analysis shed light on steric and electrostatic complementarities of these non-secosteroidal ligands to VDR. Finally, the drug likeness properties were also calculated and found within the acceptable range. The results show that bulky group substitutions in side chain decrease the VDR activity, whereas a small substitution increased it. Functional analyses of H393A and H301A mutations substantiate their roles in the VDR agonistic and antagonistic activities. Apart from the His393 and His301, two other amino acids in the hinge region viz. Ser233 and Arg270 acted as an electron donor/acceptor specific to the agonist in the distinct ligand potency. The results from this study disclose the binding mechanism of VDR agonists and structural modifications required to improve the selectivity.
Collapse
Affiliation(s)
- Nagamani Selvaraman
- Pharmacogenomics and CADD Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630 004, India
| | - Saravana Kumar Selvam
- Pharmacogenomics and CADD Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630 004, India
| | - Karthikeyan Muthusamy
- Pharmacogenomics and CADD Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630 004, India
| |
Collapse
|
15
|
Bugge S, Buene AF, Jurisch-Yaksi N, Moen IU, Skjønsfjell EM, Sundby E, Hoff BH. Extended structure–activity study of thienopyrimidine-based EGFR inhibitors with evaluation of drug-like properties. Eur J Med Chem 2016; 107:255-74. [DOI: 10.1016/j.ejmech.2015.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
|
16
|
Tripathi SK, Singh SK. Insights into the structural basis of 3,5-diaminoindazoles as CDK2 inhibitors: prediction of binding modes and potency by QM-MM interaction, MESP and MD simulation. MOLECULAR BIOSYSTEMS 2015; 10:2189-201. [PMID: 24909777 DOI: 10.1039/c4mb00077c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The novel 3,5-diaminoindazole derivatives are well-known as potent and anti-proliferative cyclin-dependent kinase 2 inhibitors. We report a combined quantum mechanics/molecular mechanics study to determine the protein-ligand interaction energy, and some quantum chemical descriptors to successfully rank these inhibitors. The results in this work show that the QM-MM interaction energy is strongly correlated to the biological activity and can be used as a predictor, which was further validated by Spearman's rank correlation coefficient. An exhaustive analysis of the protein-ligand structures obtained from molecular dynamics simulations shows specific interactions within the active site. Furthermore, the docking study was supported by electronic property analysis using density functional theory at the B3LYP/3-21*G level. The results obtained from molecular docking and surface analysis shed some insight on steric and electronic complementarities of these molecules to CDK2. Aqueous solvation energy values give an indication of the solubility and can be used as a guide for the pharmacokinetic optimization of these molecules. Furthermore, ADME/T properties calculated are in the desirable range, so these compounds are predicted to be drug like with low toxicity potential. Overall, the approach was successful in the cases considered, and it could be useful for the design of inhibitors in the lead optimization phase of drug discovery against CDK2.
Collapse
Affiliation(s)
- Sunil Kumar Tripathi
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India.
| | | |
Collapse
|
17
|
FU TING, WU XUE, XIU ZHILONG, WANG JINGUANG, YIN LIU, LI GUOHUI. UNDERSTANDING THE MOLECULAR MECHANISM OF BINDING MODES OF AURORA A INHIBITORS BY LONG TIME SCALE GPU DYNAMICS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613410034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inhibition of Aurora A kinase interaction is considered to be a promising approach for the discovery of new molecularly targeted cancer therapeutics. In this study, the binding mechanisms of two different inhibitors with a contrasting binding affinity to Aurora A were investigated by long time scale GPU molecular dynamics (MD) simulations coupled with molecular mechanics-Poisson–Boltzmann/generalized Born surface area (MM-PB/GBSA) method. The results showed that the predicted binding free energies of these two complexes were consistent with the experimental data. Through analyzing the individual energy components of binding free energy, we found that the van der Waals contribution was the main force to drive the inhibitor–protein binding and the electrostatic contribution was also a crucial factor for the inhibitor–Aurora A binding. The structural analysis demonstrated that the inhibitor HPM could produce more hydrophobic interaction contacts with Aurora A than that of 2JZ, and the loss of key hydrogen bonds between the inhibitor and residue Arg137 in the hinge region of Aurora A was another important reason for the weaker binding affinity of 2JZ to Aurora A. This study sheds more light on the development of the efficient inhibitors targeting the Aurora A.
Collapse
Affiliation(s)
- TING FU
- Department of Bioscience and Biotechnology, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
- Laboratory of Molecular Modeling and Design, State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, P. R. China
- Graduate University of the Chinese Academy of Sciences 19A Yuquanlu, Beijing 100049, P. R. China
| | - XUE WU
- Department of Bioscience and Biotechnology, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
- Laboratory of Molecular Modeling and Design, State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, P. R. China
- Graduate University of the Chinese Academy of Sciences 19A Yuquanlu, Beijing 100049, P. R. China
| | - ZHILONG XIU
- Department of Bioscience and Biotechnology, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - JINGUANG WANG
- Thoracic Surgery Department in the 1st Affiliated, Hospital of Dalian Medical University, 222 Zhongshan Road Dalian, Liaoning Province, China 116011, P. R. China
| | - LIU YIN
- Oncology Department in the 1st Affiliated, Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning Province, China 116011, P. R. China
| | - GUOHUI LI
- Laboratory of Molecular Modeling and Design, State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, P. R. China
| |
Collapse
|
18
|
A combined approach based on 3D pharmacophore and docking for identification of new aurora A kinase inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0747-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Tripathi SK, Muttineni R, Singh SK. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. J Theor Biol 2013; 334:87-100. [PMID: 23727278 DOI: 10.1016/j.jtbi.2013.05.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/22/2022]
Abstract
Molecular docking, free energy calculation and molecular dynamics (MD) simulation studies have been performed, to explore the putative binding modes of 3,5-diaminoindazoles, imidazo(1,2-b)pyridazines and triazolo(1,5-a) pyridazines series of Cyclin-dependent kinase (CDK2) inhibitors. To evaluate the effectiveness of docking protocol in flexible docking, we have selected crystallographic bound compound to validate our docking procedure as evident from root mean square deviations (RMSDs). We found different binding sites namely catalytic, inhibitory phosphorylation, cyclin binding and CKS-binding site of the CDK2 contributing towards the binding of these compounds. Moreover, correlation between free energy of binding and biological activity yielded a statistically significant correlation coefficient. Finally, three representative protein-ligand complexes were subjected to molecular dynamics simulation to determine the stability of the predicted conformations. The low value of the RMSDs between the initial complex structure and the energy minimized final average complex structure suggests that the derived docked complexes are close to equilibrium. We suggest that the phenylacetyl type of substituents and cyclohexyl moiety make the favorable interactions with a number of residues in the active site, and show better inhibitory activity to improve the pharmacokinetic profile of compounds against CDK2. The structure-based drug design strategy described in this study will be highly useful for the development of new inhibitors with high potency and selectivity.
Collapse
Affiliation(s)
- Sunil Kumar Tripathi
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| | | | | |
Collapse
|
20
|
Leng Y, Lu T, Yuan HL, Liu HC, Lu S, Zhang WW, Jiang YL, Chen YD. QSAR studies on imidazopyrazine derivatives as Aurora A kinase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:705-730. [PMID: 22971111 DOI: 10.1080/1062936x.2012.719541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aurora kinases have emerged as attractive targets for the development of novel anti-cancer agents. A combined study of molecular docking, pharmacophore modelling and 3D-QSAR was performed on a series of imidazo [1, 2-a] pyrazines as novel Aurora kinase inhibitors to gain insights into the structural determinants and their structure-activity relationship. An ensemble of conformations based on molecular docking was used for PHASE pharmacophore studies. The developed best-fitted pharmacophore model was validated by diverse chemotypes of Aurora A kinase inhibitors and was consistent with the structural requirements for the docked binding mechanism. Subsequently, the pharmacophore-based alignment was used to develop PHASE and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models. The best CoMSIA model showed good statistics (q (2 )= 0.567, r (2 )= 0.992), and the predictive ability of the model was validated using an external test set of 13 compounds giving a satisfactory prediction ([Formula: see text]). The 3D contour maps provided insight into the binding mechanism and highlighted key structural features that are essential to the inhibitory activity. Based on the PHASE and CoMSIA 3D-QSAR results, a set of novel Aurora A inhibitors were designed that showed excellent potencies.
Collapse
Affiliation(s)
- Y Leng
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Some insights into the binding mechanism of Aurora B kinase gained by molecular dynamics simulation. J Mol Model 2012; 18:4591-601. [DOI: 10.1007/s00894-012-1453-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/30/2012] [Indexed: 12/29/2022]
|
22
|
Tripathi SK, Selvaraj C, Singh SK, Reddy KK. Molecular docking, QPLD, and ADME prediction studies on HIV-1 integrase leads. Med Chem Res 2012. [DOI: 10.1007/s00044-011-9940-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Bhatt A, Gurukumar KR, Basu A, Patel MR, Kaushik-Basu N, Talele TT. Synthesis and SAR optimization of diketo acid pharmacophore for HCV NS5B polymerase inhibition. Eur J Med Chem 2011; 46:5138-45. [PMID: 21893371 DOI: 10.1016/j.ejmech.2011.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Here we report the synthesis and biological evaluation of a new series of α,γ-diketo acids (DKAs) as NS5B polymerase inhibitors. We initiated structure-activity relationship (SAR) optimization around the furan moiety of compound 1a [IC(50) = 21.8 μM] to achieve more active NS5B inhibitors. This yielded compound 3a [IC(50) = 8.2 μM] bearing the 5-bromobenzofuran-2-yl moiety, the first promising lead compound of the series. Varying the furan moiety with thiophene, thiazole and indazole moieties resulted in compound 11a [IC(50) = 7.5 μM] bearing 3-methylthiophen-2-yl moiety. Finally replacement of the thiophene ring with a bioisosteric phenyl ring further improved the inhibitory activity as seen in compounds 21a [IC(50) = 5.2 μM] and 24a [IC(50) = 2.4 μM]. Binding mode of compound 24a using glide docking within the active site of NS5B polymerase will form the basis for future SAR optimization.
Collapse
Affiliation(s)
- Aaditya Bhatt
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | |
Collapse
|
24
|
Prediction of biological activity of Aurora-A kinase inhibitors by multilinear regression analysis and support vector machine. Bioorg Med Chem Lett 2011; 21:2238-43. [DOI: 10.1016/j.bmcl.2011.02.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 02/19/2011] [Accepted: 02/28/2011] [Indexed: 01/17/2023]
|
25
|
He G, Qiu M, Li R, Song X, Zheng X, Shi J, Xu G, Han J, Yu L, Yang S, Chen L, Wei Y. Molecular docking-based 3D-QSAR studies of pyrrolo[3,4-c]pyrazole derivatives as Aurora-A inhibitors. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.517529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G. He
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - M.H. Qiu
- b Institute of Botany, The Chinese Academy of Sciences , Kunming, 650204, P.R. China
| | - R. Li
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - X.R. Song
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - X. Zheng
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - J.Y. Shi
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - G.B. Xu
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - J. Han
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - L.T. Yu
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - S.Y. Yang
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - L.J. Chen
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| | - Y.Q. Wei
- a State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu, 610041, P.R. China
| |
Collapse
|
26
|
Aurora-A kinase inhibitor scaffolds and binding modes. Drug Discov Today 2010; 16:260-9. [PMID: 21147253 DOI: 10.1016/j.drudis.2010.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 09/17/2010] [Accepted: 12/07/2010] [Indexed: 01/08/2023]
Abstract
Aurora kinases (A-C) belong to the serine/threonine protein kinase family. In recent years, the constitutive or elevated expression of Aurora kinases has been found in cancer cells and oncogene transfected cells. In this review, we summarize the common binding modes of Aurora-A kinase inhibitors, the hot spot residues in the binding sites and the privileged inhibitor structures. Our review of the reported chemical scaffolds of Aurora-A kinase inhibitors and their binding modes could provide a useful framework from which new design strategies for inhibitors might be assessed or developed.
Collapse
|
27
|
Qin J, Xi L, Du J, Liu H, Yao X. QSAR studies on aminothiazole derivatives as aurora a kinase inhibitors. Chem Biol Drug Des 2010; 76:527-37. [PMID: 21040493 DOI: 10.1111/j.1747-0285.2010.01030.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Quantitative structure-activity relationship studies on 54 aminothiazole derivatives as Aurora A kinase inhibitors were performed to explore the important factors affecting their biologic activity. For 2D-quantitative structure-activity relationship study, genetic algorithm combined with multiple linear regression was used to select significant molecular descriptors. The MLR model gave squared correlation coefficient of 0.828 and squared cross-validated correlation coefficient of 0.771 for the training set compounds. Comparative molecular field analysis and comparative molecular similarity indices analysis were used to develop 3D-quantitative structure-activity relationship models. The comparative molecular field analysis model gave cross-validated correlation coefficient q² of 0.695 and non-cross-validated correlation coefficient r² of 0.977. For comparative molecular similarity indices analysis model, the corresponding q² and r² were 0.698 and 0.960, respectively. The proposed 3D-quantitative structure-activity relationship models were validated by the test set compounds not used in the modeling process, with r²(pred) values of 0.788 for comparative molecular field analysis and 0.798 for comparative molecular similarity indices analysis. The 3D contour maps suggested that further modification of the aniline group of compound 22 considering electrostatic, hydrophobic and hydrogen bond properties would influence the inhibitory activity. The results from quantitative structure-activity relationship models would be very useful to understand the structure-activity relationship of these inhibitors and to guide the further structural modification of new potential inhibitors.
Collapse
Affiliation(s)
- Jin Qin
- Department of Chemistry, Lanzhou University, Lanzhou, China School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | | | | | | |
Collapse
|
28
|
Gruszczyński P, Smalara K, Obuchowski M, Kaźmierkiewicz R. ATP and its N⁶-substituted analogues: parameterization, molecular dynamics simulation and conformational analysis. J Mol Model 2010; 17:1081-90. [PMID: 20668896 PMCID: PMC3096017 DOI: 10.1007/s00894-010-0808-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/12/2010] [Indexed: 11/26/2022]
Abstract
In this work we used a combination of classical molecular dynamics and simulated annealing techniques to shed more light on the conformational flexibility of 12 adenosine triphosphate (ATP) analogues in a water environment. We present simulations in AMBER force field for ATP and 12 published analogues [Shah et al. (1997) Proc Natl Acad Sci USA 94: 3565–3570]. The calculations were carried out using the generalized Born (GB) solvation model in the presence of the cation Mg2+. The ion was placed at a close distance (2 Å) from the charged oxygen atoms of the beta and gamma phosphate groups of the −3 negatively charged ATP analogue molecules. Analysis of the results revealed the distribution of inter-proton distances H8–H1′ and H8–H2′ versus the torsion angle ψ (C4–N9-C1′–O4′) for all conformations of ATP analogues. There are two gaps in the distribution of torsion angle ψ values: the first is between −30 and 30 degrees and is described by cis-conformation; and the second is between 90 and 175 degrees, which mostly covers a region of anti conformation. Our results compare favorably with results obtained in experimental assays [Jiang and Mao (2002) Polyhedron 21:435–438]. Dihedral O4′–C1′–N9–C4 angle dependence on inter-proton distances H8–H1′ (crosses) and H8–H2′ (dots) measured for ATP ![]()
Collapse
Affiliation(s)
- Paweł Gruszczyński
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdańsk, Poland.
| | | | | | | |
Collapse
|
29
|
Shi J, Xu G, Zhu W, Ye H, Yang S, Luo Y, Han J, Yang J, Li R, Wei Y, Chen L. Design and synthesis of 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles and pyrazolo[3,4-b]pyridines for Aurora-A kinase inhibitors. Bioorg Med Chem Lett 2010; 20:4273-8. [PMID: 20621733 DOI: 10.1016/j.bmcl.2010.04.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/08/2010] [Accepted: 04/20/2010] [Indexed: 02/05/2023]
Abstract
Two series of 3-aminopyrazole compounds including 24 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles and 16 pyrazolo[3,4-b]pyridines were synthesized and evaluated against HCT116, A549, and A2780 tumor cell lines. Among them, three compounds were found to have the ideal anti-proliferative activities in vitro. Docking experiments showed that the novel pyrazolo[3,4-b]pyridines share the similar interaction mode with Aurora-A kinase as PHA739358.
Collapse
Affiliation(s)
- Jianyou Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Deeb O, Rosales-Hernández MC, Gómez-Castro C, Garduño-Juárez R, Correa-Basurto J. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligandâprotein interactions. Biopolymers 2010; 93:161-70. [DOI: 10.1002/bip.21314] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Grant S, Tran P, Zhang Q, Zou A, Dinh D, Jensen J, Zhou S, Kang X, Zachwieja J, Lippincott J, Liu K, Johnson SL, Scales S, Yin C, Nukui S, Stoner C, Prasanna G, Lafontaine J, Wells P, Li H. Discovery of a novel class of targeted kinase inhibitors that blocks protein kinase C signaling and ameliorates retinal vascular leakage in a diabetic rat model. Eur J Pharmacol 2009; 627:16-25. [PMID: 19850035 DOI: 10.1016/j.ejphar.2009.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/18/2009] [Accepted: 10/06/2009] [Indexed: 01/21/2023]
Abstract
Protein kinase C (PKC) family members such as PKCbetaII may become activated in the hyperglycemic state associated with diabetes. Preclinical and clinical data implicate aberrant PKC activity in the development of diabetic microvasculature abnormalities. Based on this potential etiological role for PKC in diabetic complications, several therapeutic PKC inhibitors have been investigated in clinical trials for the treatment of diabetic patients. In this report, we present the discovery and preclinical evaluation of a novel class of 3-amino-pyrrolo[3,4-c]pyrazole derivatives as inhibitors of PKC that are structurally distinct from the prototypical indolocarbazole and bisindolylmaleimide PKC inhibitors. From this pyrrolo-pyrazole series, several compounds were identified from biochemical assays as potent, ATP-competitive inhibitors of PKC activity with high specificity for PKC over other protein kinases. These compounds were also found to block PKC signaling activity in multiple cellular functional assays. PF-04577806, a representative from this series, inhibited PKC activity in retinal lysates from diabetic rats stimulated with phorbol myristate acetate. When orally administered, PF-04577806 showed good exposure in the retina of diabetic Long-Evans rats and ameliorated retinal vascular leakage in a streptozotocin-induced diabetic rat model. These novel PKC inhibitors represent a promising new class of targeted protein kinase inhibitors with potential as therapeutic agents for the treatment of patients with diabetic microvascular complications.
Collapse
Affiliation(s)
- Stephan Grant
- Department of Biochemistry and Primary Screening, Pfizer Global Research & Development, Pfizer La Jolla Laboratories, San Diego, CA 92121, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pinel S, Barbault-Foucher S, Lott-Desroches MC, Astier A. [Inhibitors of aurora kinases]. ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:69-77. [PMID: 19298889 DOI: 10.1016/j.pharma.2008.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/25/2008] [Accepted: 12/22/2008] [Indexed: 12/18/2022]
Abstract
Aurora kinases (A, B and C) are proteins expressed only in cells which divide actively and their increase is a factor of bad prognosis in cancer. They regulate the maturation of centrosomes, the separation and the condensation of chromosomes, mitotic checkpoint and cytokinesis. The inhibition of aurora kinases, by powerful and selective inhibitors, is due to the formation of abnormal cells which are eliminated by apoptosis. The purpose of this article is to present the role, the antitumor activity and the tolerability of these inhibitors. They can be administered orally or intravenously, on weekly or monthly schedules. In our knowledge, twelve molecules are evaluated at the present time and will be discussed only the most advanced namely: VX-680, ZM 447439, MLN 8054, AZD 1152, PHA 739358, SU 6668 and AT 9283. The main indications are breast, colon, lung, pancreas and bladder cancers as well as hematologic tumors such as leukemia (ALL, AML, CML) and lymphoma. These inhibitors can be associated with other chemotherapies. They seem well tolerated; the reported side effects are digestive disorders (diarrhea), fever, asthenia, alopecia, slumber, neutropenia, myelosuppression and disturbance of the biological markers.
Collapse
Affiliation(s)
- S Pinel
- Service pharmacie, hôpital Antoine-Béclère, AP-HP, 157, rue de la porte de Trivaux, 92140 Clamart, France
| | | | | | | |
Collapse
|