1
|
Shen Z, Yan YH, Yang S, Zhu S, Yuan Y, Qiu Z, Jia H, Wang R, Li GB, Li H. ProfKin: A comprehensive web server for structure-based kinase profiling. Eur J Med Chem 2021; 225:113772. [PMID: 34411891 DOI: 10.1016/j.ejmech.2021.113772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Protein kinases are central mediators of signal-transduction cascades and attractive drug targets for therapeutic intervention. Since kinases are structurally and mechanistically related to each other, kinase inhibitor selectivity is often investigated by kinase profiling and considered as an important index for drug discovery. We here describe a versatile web server termed ProfKin for structure-based kinase profiling, which is based on a kinase-ligand focused database (KinLigDB). It provides all ready-to-use 3D structure coordinates of 4219 kinase-ligand complex structures covering 297 human kinases and the associated information, particularly including binding site type, binding ligand type, interaction fingerprints, downstream molecules and related human diseases. The web server works via predicting possible binding modes for the query molecule, prioritizing the binding modes guided by an interaction fingerprint analysis method, and giving a list of ranked kinases by a comprehensive index. Users can freely select entire or part of the KinLigDB database, e.g. via subfamily and binding site type, to customize the profiling contents. The superimpositions of the predicted binding poses of the query molecule with reference binding modes can be visually inspected on the website. The additional classification attributes and phylogenetic tree are also given for each top-ranked kinase.
Collapse
Affiliation(s)
- Zihao Shen
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu-Hang Yan
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Shuo Yang
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237, China
| | - Sang Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Yuan Yuan
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Zhiqiang Qiu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Huan Jia
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Ruiqiong Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Tortosa V, Pietropaolo V, Brandi V, Macari G, Pasquadibisceglie A, Polticelli F. Computational Methods for the Identification of Molecular Targets of Toxic Food Additives. Butylated Hydroxytoluene as a Case Study. Molecules 2020; 25:E2229. [PMID: 32397407 PMCID: PMC7248939 DOI: 10.3390/molecules25092229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
Butylated hydroxytoluene (BHT) is one of the most commonly used synthetic antioxidants in food, cosmetic, pharmaceutical and petrochemical products. BHT is considered safe for human health; however, its widespread use together with the potential toxicological effects have increased consumers concern about the use of this synthetic food additive. In addition, the estimated daily intake of BHT has been demonstrated to exceed the recommended acceptable threshold. In the present work, using BHT as a case study, the usefulness of computational techniques, such as reverse screening and molecular docking, in identifying protein-ligand interactions of food additives at the bases of their toxicological effects has been probed. The computational methods here employed have been useful for the identification of several potential unknown targets of BHT, suggesting a possible explanation for its toxic effects. In silico analyses can be employed to identify new macromolecular targets of synthetic food additives and to explore their functional mechanisms or side effects. Noteworthy, this could be important for the cases in which there is an evident lack of experimental studies, as is the case for BHT.
Collapse
Affiliation(s)
- Valentina Tortosa
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Valentina Pietropaolo
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Valentina Brandi
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Gabriele Macari
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Andrea Pasquadibisceglie
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (V.P.); (V.B.); (G.M.); (A.P.)
- National Institute of Nuclear Physics, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
4
|
Lapillo M, Tuccinardi T, Martinelli A, Macchia M, Giordano A, Poli G. Extensive Reliability Evaluation of Docking-Based Target-Fishing Strategies. Int J Mol Sci 2019; 20:ijms20051023. [PMID: 30818741 PMCID: PMC6429110 DOI: 10.3390/ijms20051023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/03/2023] Open
Abstract
The development of target-fishing approaches, aimed at identifying the possible protein targets of a small molecule, represents a hot topic in medicinal chemistry. A successful target-fishing approach would allow for the elucidation of the mechanism of action of all therapeutically interesting compounds for which the actual target is still unknown. Moreover, target-fishing would be essential for preventing adverse effects of drug candidates, by predicting their potential off-targets, and it would speed up drug repurposing campaigns. However, due to the huge number of possible protein targets that a small-molecule might interact with, experimental target-fishing approaches are out of reach. In silico target-fishing represents a valuable alternative, and examples of receptor-based approaches, exploiting the large number of crystallographic protein structures determined to date, have been reported in the literature. To the best of our knowledge, no proper evaluation of such approaches is, however, reported yet. In the present work, we extensively assessed the reliability of docking-based target-fishing strategies. For this purpose, a set of X-ray structures belonging to different targets was selected, and a dataset of compounds, including 10 experimentally active ligands for each target, was created. A target-fishing benchmark database was then obtained, and used to assess the performance of 13 different docking procedures, in identifying the correct target of the dataset ligands. Moreover, a consensus docking-based target-fishing strategy was developed and evaluated. The analysis highlighted that specific features of the target proteins could affect the reliability of the protocol, which however, proved to represent a valuable tool in the proper applicability domain. Our study represents the first extensive performance assessment of docking-based target-fishing approaches, paving the way for the development of novel efficient receptor-based target fishing strategies.
Collapse
Affiliation(s)
| | | | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
5
|
Zhou X, Wu M, Xie Y, Li GB, Li T, Xie R, Wang K, Zhang Y, Zou C, Wu W, Wang Q, Wang X, Zhang X, Li J, Li J, Wei YQ. Identification of Glycine Receptor α3 as a Colchicine-Binding Protein. Front Pharmacol 2018; 9:1238. [PMID: 30467477 PMCID: PMC6236057 DOI: 10.3389/fphar.2018.01238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Colchicine (Col) is considered a kind of highly effective alkaloid for preventing and treating acute gout attacks (flares). However, little is known about the underlying mechanism of Col in pain treatment. We have previously developed a customized virtual target identification method, termed IFPTarget, for small-molecule target identification. In this study, by using IFPTarget and ligand similarity ensemble approach (SEA), we show that the glycine receptor alpha 3 (GlyRα3), which play a key role in the processing of inflammatory pain, is a potential target of Col. Moreover, Col binds directly to the GlyRα3 as determined by the immunoprecipitation and bio-layer interferometry assays using the synthesized Col-biotin conjugate (linked Col and biotin with polyethylene glycol). These results suggest that GlyRα3 may mediate Col-induced suppression of inflammatory pain. However, whether GlyRα3 is the functional target of Col and serves as potential therapeutic target in gouty arthritis requires further investigations.
Collapse
Affiliation(s)
- Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingbo Wu
- School of Bioscience and Biotechnology, Chengdu Medical College, Chengdu, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Guo-Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tao Li
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rou Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kailun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiangwei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ximu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
6
|
Huang H, Zhang G, Zhou Y, Lin C, Chen S, Lin Y, Mai S, Huang Z. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds. Front Chem 2018; 6:138. [PMID: 29868550 PMCID: PMC5954125 DOI: 10.3389/fchem.2018.00138] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Collapse
Affiliation(s)
- Hongbin Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Guigui Zhang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Yuquan Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Chenru Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Suling Chen
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Yutong Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Shangkang Mai
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| |
Collapse
|
7
|
Yu ZJ, Liu S, Zhou S, Li H, Yang F, Yang LL, Wu Y, Guo L, Li GB. Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases. Bioorg Med Chem Lett 2018; 28:1037-1042. [PMID: 29477271 DOI: 10.1016/j.bmcl.2018.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 01/08/2023]
Abstract
Rosmarinic acid (RA), a polyphenolic phytochemical, has broad-spectrum biological and pharmacological activity. A virtual target screening method termed IFPTarget combined with enzyme inhibition assays led to the identification of the clinically relevant metallo-β-lactamase (MBL) VIM-2 as one of unexploited targets of RA. The enzyme kinetic studies indicated that RA is a fully reversible, substrate-competitive VIM-2 inhibitor. The isothermal titration calorimetry (ITC) analyses revealed that the initial binding of RA to VIM-2 is mainly due to enthalpy contribution. Further inhibition assays with RA related compounds revealed that salvianolic acid A, a derivative of RA, manifests potent inhibition to VIM-2, more interestingly, which shows inhibitory activity against the NDM-1, another clinically relevant MBL subtype, and the serine-β-lactamase TEM-1 that is structurally and mechanistically distinct from the VIM-2 and NDM-1.
Collapse
Affiliation(s)
- Zhu-Jun Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Sha Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Shu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Hui Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Fan Yang
- College of Food and Bioengineering, Xihua University, Sichuan 610039, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Sichuan 610039, China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
8
|
Pan Z, Chen Y, Liu J, Jiang Q, Yang S, Guo L, He G. Design, synthesis, and biological evaluation of polo-like kinase 1/eukaryotic elongation factor 2 kinase (PLK1/EEF2K) dual inhibitors for regulating breast cancer cells apoptosis and autophagy. Eur J Med Chem 2018; 144:517-528. [PMID: 29288948 DOI: 10.1016/j.ejmech.2017.12.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
Abstract
Both PLK1 and EEF2K are serine⁄threonine kinases that play important roles in the proliferation and programmed cell death of various types of cancer. They are highly expressed in breast cancer tissues. Based on the multiple-complexes generated pharmacophore models of PLK1 and homology models of EEF2K, the integrated virtual screening is performed to discover novel PLK1/EEF2K dual inhibitors. The top ten hit compounds are selected and tested in vitro, and five of them display PLK1 and EEF2K inhibition in vitro. Based on the docking modes of the most potent hit compound, a series of derivatives are synthesized, characterized and biological assayed on the PLK1, EEF2K as well as breast cancer cell proliferation models. Compound 18i with satisfied inhibitory potency are shifted to molecular mechanism studies contained molecular dynamics simulations, cell cycles, apoptosis and autophagy assays. Our results suggested that these novel PLK1/EEF2K dual inhibitors can be used as lead compounds for further development breast cancer chemotherapy.
Collapse
Affiliation(s)
- Zhaoping Pan
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yujuan Chen
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jingyan Liu
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qinglin Jiang
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, China.
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Gu He
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
9
|
Li GB, Yu ZJ, Liu S, Huang LY, Yang LL, Lohans CT, Yang SY. IFPTarget: A Customized Virtual Target Identification Method Based on Protein–Ligand Interaction Fingerprinting Analyses. J Chem Inf Model 2017; 57:1640-1651. [PMID: 28661143 DOI: 10.1021/acs.jcim.7b00225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Guo-Bo Li
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Zhu-Jun Yu
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Sha Liu
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Lu-Yi Huang
- Laboratory
of Biotherapy and Cancer Center, West China Hospital, West China Medical
School, Sichuan University, Sichuan 610041, China
| | - Ling-Ling Yang
- College
of Food and Bioengineering, Xihua University, Sichuan 610039, China
| | - Christopher T. Lohans
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sheng-Yong Yang
- Laboratory
of Biotherapy and Cancer Center, West China Hospital, West China Medical
School, Sichuan University, Sichuan 610041, China
| |
Collapse
|
10
|
P R KR, Fernandez A, Laila SP, B A, C S S, V S V. Synthesis, spectral characterization, crystal structure, cytotoxicity and apoptosis-Inducing activity of two derivatives of 2-hydroxy-1,4-naphthaquinone. Photodiagnosis Photodyn Ther 2017; 17:250-259. [PMID: 28122250 DOI: 10.1016/j.pdpdt.2017.01.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/03/2016] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
A phenaxazone compound [5H-Benzo[a]phenoxazin-5-one (BP)] along with an aminoquinone[2-[(o-hydroxyphenyl)amino]-1,4-naphthaquinone (HAN)] derivatives were synthesized from lawsone using ultrasound irradiation technique. The structure of the compounds were characterized by elemental analysis and various spectral studies. Optoelectronic properties were studied using Schrodinger material science suit (2015). The compounds exhibit fluorescence emission in longer wave length it may find applications in photodynamic therapy. Single crystal X-ray diffraction studies reveals that the compound BP crystallizes in monoclinic space group. The antioxidant activity of HAN and BP were determined using DPPH radical scavenging assay and the results indicate that both the compounds have good antioxidant capacity, HAN having more scavenging activity than BP. Lead molecules were identified using in silico molecular docking studies as a green chemistry approach. iGEMDOCK, GOLD and Schrödinger softwares were used for these studies. The docking studies reveal that the structural modification of the parent compound gave more active compounds making them promising lead molecules. The lead molecules were subjected to in vitro studies. The cytotoxicity of BP and HAN was studied using human breast cancer (SKBR3) cell lines. The IC50 value of HAN was found to be 19.8μM while BP was found to have cell viability, less than 10% even at 25μM concentration. The chemotherapeutic agents kill the cancer cells mainly through apoptosis. HAN and BP were subjected to apoptosis studies. BP was found to more active than HAN. Thus it can be suggested that the mechanism of cell death may be through apoptosis.
Collapse
Affiliation(s)
- Kavitha Rani P R
- Dept. of Chemistry, SFR College for Women, Sivakasi, 626123, Tamilnadu, India.
| | - Annette Fernandez
- Dept. of Chemistry, College of Engineering, Trivandrum, 695016, Kerala, India
| | - Shiny P Laila
- Dept. of Chemistry, University College, Trivandrum, 695014, Kerala, India
| | - Arunkumar B
- Dept. of Chemistry, College of Engineering, Trivandrum, 695016, Kerala, India
| | - Sreelakshmi C S
- Dept. of Chemistry, Mohandas College of Engineering and Technology, Thiruvananthapuram, 695544, Kerala, India
| | - Vishnu V S
- Dept. of Chemistry, College of Engineering, Trivandrum, 695016, Kerala, India
| |
Collapse
|
11
|
Lee A, Lee K, Kim D. Using reverse docking for target identification and its applications for drug discovery. Expert Opin Drug Discov 2016; 11:707-15. [PMID: 27186904 DOI: 10.1080/17460441.2016.1190706] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION In contrast to traditional molecular docking, inverse or reverse docking is used for identifying receptors for a given ligand among a large number of receptors. Reverse docking can be used to discover new targets for existing drugs and natural compounds, explain polypharmacology and the molecular mechanism of a substance, find alternative indications of drugs through drug repositioning, and detecting adverse drug reactions and drug toxicity. AREAS COVERED In this review, the authors examine how reverse docking methods have evolved over the past fifteen years and how they have been used for target identification and related applications for drug discovery. They discuss various aspects of target databases, reverse docking tools and servers. EXPERT OPINION There are several issues related to reverse docking methods such as target structure dataset construction, computational efficiency, how to include receptor flexibility, and most importantly, how to properly normalize the docking scores. In order for reverse docking to become a truly useful tool for the drug discovery, these issues need to be adequately resolved.
Collapse
Affiliation(s)
- Aeri Lee
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| | - Kyoungyeul Lee
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| | - Dongsup Kim
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| |
Collapse
|
12
|
Sharma MK, Murumkar PR, Kuang G, Tang Y, Yadav MR. Identifying the structural features and diversifying the chemical domain of peripherally acting CB1 receptor antagonists using molecular modeling techniques. RSC Adv 2016. [DOI: 10.1039/c5ra20612j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A four featured pharmacophore and predictive 3D-QSAR models were developed which were used for virtual screening of the Asinex database to get chemically diverse hits of peripherally active CB1 receptor antagonists.
Collapse
Affiliation(s)
| | | | - Guanglin Kuang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai–200237
- China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai–200237
- China
| | - Mange Ram Yadav
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara–390 001
- India
| |
Collapse
|
13
|
|
14
|
Yang LL, Yang X, Li GB, Fan KG, Yin PF, Chen XG. An integrated molecular docking and rescoring method for predicting the sensitivity spectrum of various serine hydrolases to organophosphorus pesticides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 96:2184-92. [PMID: 26172068 DOI: 10.1002/jsfa.7335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/11/2015] [Accepted: 07/06/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Ling-Ling Yang
- School of Food and Bioengineering; Xihua University; Sichuan 610039 China
| | - Xiao Yang
- School of Food and Bioengineering; Xihua University; Sichuan 610039 China
| | - Guo-Bo Li
- School of Food and Bioengineering; Xihua University; Sichuan 610039 China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital; Sichuan University; Sichuan 610041 China
| | - Kai-Ge Fan
- School of Food and Bioengineering; Xihua University; Sichuan 610039 China
| | - Peng-Fei Yin
- School of Food and Bioengineering; Xihua University; Sichuan 610039 China
| | - Xiang-Gui Chen
- School of Food and Bioengineering; Xihua University; Sichuan 610039 China
| |
Collapse
|
15
|
Sun HB, Wang XY, Li GB, Zhang LD, Liu J, Zhao LF. Design, synthesis and biological evaluation of novel C3-functionalized oxindoles as potential Pim-1 kinase inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra00177c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel series of C3-functionalized oxindoles, 3-(2-oxo-4-phenylbut-3-en-1-ylidene) indolin-2-ones as potential Pim-1 kinase inhibitors, were designed, synthesized and investigated for inhibition of human cancer-cell proliferation.
Collapse
Affiliation(s)
- Hong-bao Sun
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University, and Collaborative Innovation Center for Biotherapy
- Chengdu 610041
- China
| | - Xiao-yan Wang
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Guo-bo Li
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University, and Collaborative Innovation Center for Biotherapy
- Chengdu 610041
- China
| | - Li-dan Zhang
- College of Chemical Engineering
- Sichuan University
- Chengdu 610064
- China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University, and Collaborative Innovation Center for Biotherapy
- Chengdu 610041
- China
| | - Li-feng Zhao
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University, and Collaborative Innovation Center for Biotherapy
- Chengdu 610041
- China
| |
Collapse
|
16
|
Xia Y, Lei Q, Zhu Y, Ye T, Wang N, Li G, Shi X, Liu Y, Shao B, Yin T, Zhao L, Wu W, Song X, Xiong Y, Wei Y, Yu L. SKLB316, a novel small-molecule inhibitor of cell-cycle progression, induces G2/M phase arrest and apoptosis in vitro and inhibits tumor growth in vivo. Cancer Lett 2014; 355:297-309. [PMID: 25301449 DOI: 10.1016/j.canlet.2014.09.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/05/2023]
Abstract
Benzothiazole derivatives have received considerable attentions for their potencies in cancer therapy. In the present study, we reported that SKLB316, a novel synthesized benzothiazole derivative, exhibits activities to inhibit colorectal and pancreatic cancer in vitro and in vivo by inducing G2/M cell cycle arrest and apoptosis. In vitro, it exhibited significant anti-proliferative activities against human cancer cells derived from different histotypes including the colorectal cancer cell line HCT116 and pancreatic cancer cell line CFPAC-1. We chose these cell lines to study the possible anti-tumor mechanism because they are sensitive to SKLB316 treatment. Flow cytometry assays showed that SKLB316 could induce G2/M cell cycle arrest. Mechanistically, SKLB316 could decrease the activities of cdc2/cyclin B1 complex, including decreasing the synthesis of cyclin B1, cdc2 and cdc25c, while accumulating the levels of phosphorylated cdc2 (Tyr15) and checkpoint kinase 2. SKLB316 could also decrease the level of cyclin E and A2. Moreover, SKLB316 could induce cancer cell apoptosis, which was associated with activation of caspase 9, downregulation of Bcl-2 and upregulation of Bax. SKLB316 could also decrease the mitochondrial membrane potential and induce the generation of reactive oxygen species in cells. The results implied that SKLB316 may induce apoptosis via the mitochondria-mediated apoptotic pathway. Moreover, SKLB316 could suppress the growth of established colorectal and pancreatic cancer tumors in nude mice without causing obvious side effects. TUNEL assays confirmed that SKLB316 could also induce tumor cell apoptosis in vivo. Taken together, these findings demonstrate the potential value of SKLB316 as a novel anti-tumor drug candidate.
Collapse
Affiliation(s)
- Yong Xia
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Lei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yongxia Zhu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ningyu Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Guobo Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xuanhong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yantong Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Bin Shao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Yin
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xuejiao Song
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Xiong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|