1
|
Li X, Zhao H, Gong M, Zhang F, Liu S, Zhang Z, He Y, Hollert H, Zhang X, Shi W, Zhou Q, Li A, Shi P. Thiamethoxam at environmentally relevant concentrations induces neurotoxicity in zebrafish larvae through binding with multiple receptors. ECO-ENVIRONMENT & HEALTH 2025; 4:100133. [PMID: 40034871 PMCID: PMC11872479 DOI: 10.1016/j.eehl.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
Thiamethoxam (THM) is one of the most widely used insecticides globally, which was designed to selectively target nicotinic acetylcholine receptors (nAChRs) in the insect nervous system and is generally considered safe for non-targeted organisms. However, increasing evidence has demonstrated its neurotoxicity in aquatic organisms, though the underlying mechanisms, especially at environmentally relevant concentrations, remain largely unclear. In this study, the swimming distance of zebrafish was significantly shortened by 14.06%-21.64% after exposure to THM at 10-1000 ng/L. This behavioral impairment may result from the damage to nervous and visual systems, as confirmed by notable apoptosis, histological analysis of the eyes, and differential expression of numerous genes. Molecular docking and biomarkers assays found that THM can bind with nAChR and multiple hormone receptors, with binding energies varying from -3.75 to -6.74 kcal/mol. Consequently, the concentrations of a neurotransmitter (acetylcholine) and related hormones (cortisol, triiodothyronine, thyroxine, and thyroid-stimulating hormone) were significantly affected. Further investigations using a weighted gene correlation network and metabolomics suggest that THM may enter the cell via endocytosis and bind with multiple hormone receptors, potentially activating the MAPK signaling pathway. This activation may disrupt purine and pyrimidine metabolism in the cell nucleus, ultimately leading to cell apoptosis and neurotoxicity. This study reveals that THM, even at environmentally relevant concentrations, poses neurological risks to zebrafish and underscore the need for urgent attention to the ecological impacts of THM in aquatic environments.
Collapse
Affiliation(s)
- Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hanbing Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Minjuan Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Feng Zhang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zepeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Goethe University, Frankfurt 60438, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg 57392, Germany
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Han Q, Zhou Y, Zi Y, Zhang R, Feng T, Zou R, Zhu W, Wang Y, Duan H. Discovery of piperonyl-tethered sulfoximines as novel low bee-toxicity aphicides targeting Amelα1/ratβ2 complex. Int J Biol Macromol 2023; 253:126719. [PMID: 37678680 DOI: 10.1016/j.ijbiomac.2023.126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR) is recognized as a significant insecticide target for neonicotinoids and some agonists. In this study, the nAChR α1 subunit from Apis mellifera was first found to be narrowly tuned to different bee toxicity insecticides, namely, sulfoxaflor (SFX) and flupyradifurone (FPF). Hence, novel sulfoximine derivatives 7a-h were rationally designed and synthesized by introducing a benzo[d][1,3]dioxole moiety into a unique sulfoximine skeleton based on the binding cavity characteristics of Amelα1/ratβ2. The two electrode voltage clamp responses of 7a-h were obviously lower than that of SFX, indicating their potentially low bee toxicity. Besides, representative compounds 7b and 7g exhibited low bee toxicity (LD50 > 11.0 μg/bee at 48 h) revealed by acute contact toxicity bioassays. Molecular modelling results indicated that Ile152, Ala151, and Val160 from honeybee subunit Amelα1 and Lys144 and Trp80 from aphid subunit Mpα1 may be crucial for bee toxicity and aphicidal activity, respectively. These results clarify the toxic mechanism of agonist insecticides on nontargeted pollinators and reveal novel scaffold sulfoximine aphicidal candidates with low bee toxicity. These results will provide a new perspective on the rational design and highly effective development of novel eco-friendly insecticides based on the structure of the nAChR subunit.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Rulei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Tianyu Feng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Renxuan Zou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Wenya Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China.
| |
Collapse
|
3
|
Su H, Zhang Q, Huang K, Wang WX, Li H, Huang Z, Cheng F, You J. Two-Compartmental Toxicokinetic Model Predicts Interspecies Sensitivity Variation of Imidacloprid to Aquatic Invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10532-10541. [PMID: 37449839 DOI: 10.1021/acs.est.3c01646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Interspecies sensitivity to the same chemical can be several orders of magnitude different. Quantifying toxicologically internal levels and toxicokinetic (TK) parameters is critical in elucidating the interspecies sensitivity. Herein, a two-compartmental TK model was constructed to characterize the uptake, distribution, and elimination kinetics toward interspecies sensitivity to an insecticide, imidacloprid. Imidacloprid exhibited the highest lethality to the insect Chironomus dilutus, followed by Lumbriculus variegatus, Hyalella azteca, and Daphnia magna. Interspecies sensitivity of imidacloprid to these invertebrates varied by ∼1000 folds based on water concentrations (LC50). Remarkably, the sensitivity variation decreased to ∼50 folds based on the internal residues (LR50), highlighting the critical role of TK in interspecies sensitivity. A one-compartmental TK model failed to simulate the bioaccumulation of imidacloprid in these invertebrates except for D. magna. Instead, a two-compartmental model successfully simulated the slow elimination of imidacloprid in the remaining three species by internally distinguishing the highly dynamic (C1) and toxicologically available (C2) fractions. We further showed that the species sensitivity of the invertebrates to imidacloprid was significantly related to C2, demonstrating that C2 was toxicologically available and responsible for the toxicity of imidacloprid. This mechanistic-based model bridged the internal distribution of organic contaminants in small invertebrates and the associated toxic potency.
Collapse
Affiliation(s)
- Hang Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qingjun Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Kunyang Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhoubing Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Fei Cheng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
4
|
Selvam B, Landagaray E, Cartereau A, Laurent AD, Graton J, Lebreton J, Thany SH, Mathé-Allainmat M, Le Questel JY. Identification of sulfonamide compounds active on the insect nervous system: Molecular modeling, synthesis and biological evaluation. Bioorg Med Chem Lett 2023; 80:129124. [PMID: 36610552 DOI: 10.1016/j.bmcl.2023.129124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) are a recognized target for insecticide design. In this work, we have identified, from a structure-based approach using molecular modeling tools, ligands with potential selective activity for pests versus pollinators. A high-throughput virtual screening with the Openeye software was performed using a library from the ZINC database, thiacloprid being used as the target structure. The top sixteen molecules were then docked in α6 cockroach and honeybee homomeric nAChRs to check from a theoretical point of view relevant descriptors in favor of pest selectivity. Among the selected molecules, one original sulfonamide compound has afterward been synthesized, together with various analogs. Two compounds of this family have been shown to behave as activators of the cockroach cholinergic synaptic transmission.
Collapse
Affiliation(s)
- Balaji Selvam
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France; Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121, France
| | | | - Alison Cartereau
- Université d'Orléans, Laboratoire Biologie des Ligneux et des Grandes Cultures, USC INRAE 1328, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Adèle D Laurent
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Jérôme Graton
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Jacques Lebreton
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Steeve H Thany
- Université d'Orléans, Laboratoire Biologie des Ligneux et des Grandes Cultures, USC INRAE 1328, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | | | | |
Collapse
|
5
|
Borah S, Hazarika DJ, Baruah M, Bora SS, Gogoi M, Boro RC, Barooah M. Imidacloprid degrading efficiency of Pseudomonas plecoglossicida MBSB-12 isolated from pesticide contaminated tea garden soil of Assam. World J Microbiol Biotechnol 2022; 39:59. [PMID: 36572801 DOI: 10.1007/s11274-022-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Long-term use of toxic pesticides in agricultural grounds has led to adverse effects on the environment and human health. Microbe-mediated biodegradation of pollutants is considered an effective strategy for the removal of contaminants in agricultural and environmental sustainability. Imidacloprid, a neonicotinoid class of pesticides, was widely applied insecticide in the control of pests in agricultural fields including the tea gardens of Assam. Here, native bacteria from imidacloprid contaminating tea garden soils were isolated and screened for imidacloprid degradation efficiency under laboratory conditions. Out of the 30 bacterial isolates, 4 were found to tolerate high concentrations of imidacloprid (25,000 ppm), one of which isolate MBSB-12 showed the highest efficiency for imidacloprid tolerance and utilization as the sole carbon source. Morphological, biochemical, and 16 S ribosomal RNA gene sequencing-based characterization revealed the isolate as Pseudomonas plecoglossicida MBSB-12. The isolate reduced 87% of extractable imidacloprid from the treated soil in 90 days compared to the control soil (without bacterial treatment). High-Resolution Mass Spectrometry (HRMS) analysis indicated imidacloprid breakdown to comparatively less harmful products viz., imidacloprid guanidine olefin [m/z = 209.0510 (M + H)+], imidacloprid urea [m/z = 212.0502 (M + H)+] and a dechlorinated degraded product of imidacloprid with m/z value 175.0900 (M + H)+. Further investigation on the molecular machinery of P. plecoglossicida MBSB-12 involved in the degradation of imidacloprid is expected to provide a better understanding of the degradation pathway.
Collapse
Affiliation(s)
- Subangshi Borah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Manjistha Baruah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Sudipta Sankar Bora
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Manuranjan Gogoi
- Department of Tea Husbandry and Technology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India.
| |
Collapse
|
6
|
Shuai J, Wang X, Li G, Kong Y, Li W, Li Z, Cheng J. Study on the mode of action between Apis mellifera (α8)2(β1)3 nAChR and typical neonicotinoids versus flupyradifurone with different bee-toxic levels. J Mol Graph Model 2022; 114:108177. [DOI: 10.1016/j.jmgm.2022.108177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/26/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
7
|
Cartereau A, Taillebois E, Le Questel JY, Thany SH. Mode of Action of Neonicotinoid Insecticides Imidacloprid and Thiacloprid to the Cockroach Pameα7 Nicotinic Acetylcholine Receptor. Int J Mol Sci 2021; 22:9880. [PMID: 34576043 PMCID: PMC8471617 DOI: 10.3390/ijms22189880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
The functional expression of the cockroach Pameα7 nicotinic acetylcholine receptor subunit has been previously studied, and was found to be able to form a homomeric receptor when expressed in Xenopus laevis oocytes. In this study, we found that the neonicotinoid insecticide imidacloprid is unable to activate the cockroach Pameα7 receptor, although thiacloprid induces low inward currents, suggesting that it is a partial agonist. In addition, the co-application or 5 min pretreatment with 10 µM imidacloprid increased nicotine current amplitudes, while the co-application or 5 min pretreatment with 10 µM thiacloprid decreased nicotine-evoked current amplitudes by 54% and 28%, respectively. This suggesting that these two representatives of neonicotinoid insecticides bind differently to the cockroach Pameα7 receptor. Interestingly, the docking models demonstrate that the orientation and interactions of the two insecticides in the cockroach Pameα7 nAChR binding pocket are very similar. Electrophysiological results have provided evidence to suggest that imidacloprid and thiacloprid could act as modulators of the cockroach Pameα7 receptors.
Collapse
Affiliation(s)
- Alison Cartereau
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| | - Emiliane Taillebois
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| | | | - Steeve H. Thany
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| |
Collapse
|
8
|
Ghosh S, Neese F, Izsák R, Bistoni G. Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy. J Chem Theory Comput 2021; 17:3348-3359. [PMID: 34037397 PMCID: PMC8190956 DOI: 10.1021/acs.jctc.1c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Herein, we introduce a fragment-based local coupled cluster embedding approach for the accurate quantification and analysis of noncovalent interactions in molecular aggregates. Our scheme combines two different expansions of the domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) energy: the many-body expansion (MBE) and the local energy decomposition (LED). The low-order terms in the MBE are initially computed in the presence of an environment that is treated at a low level of theory. Then, LED is used to decompose the energy of each term in the embedded MBE into additive fragment and fragment-pairwise contributions. This information is used to quantify the total energy of the system while providing at the same time in-depth insights into the nature and cooperativity of noncovalent interactions. Two different approaches are introduced and tested, in which the environment is treated at different levels of theory: the local coupled cluster in the Hartree-Fock (LCC-in-HF) method, in which the environment is treated at the HF level; and the electrostatically embedded local coupled cluster method (LCC-in-EE), in which the environment is replaced by point charges. Both schemes are designed to preserve as much as possible the accuracy of the parent local coupled cluster method for total energies, while being embarrassingly parallel and less memory intensive. These schemes appear to be particularly promising for the study of large and complex molecular aggregates at the coupled cluster level, such as condensed phase systems and protein-ligand interactions.
Collapse
Affiliation(s)
- Soumen Ghosh
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Beck ME, Riplinger C, Neese F, Bistoni G. Unraveling individual host-guest interactions in molecular recognition from first principles quantum mechanics: Insights into the nature of nicotinic acetylcholine receptor agonist binding. J Comput Chem 2021; 42:293-302. [PMID: 33232540 DOI: 10.1002/jcc.26454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022]
Abstract
Drug binding to a protein target is governed by a complex pattern of noncovalent interactions between the ligand and the residues in the protein's binding pocket. Here we introduce a generally applicable, parameter-free, computational method that allows for the identification, quantification, and analysis of the key ligand-residue interactions responsible for molecular recognition. Our strategy relies on Local Energy Decomposition analysis at the "gold-standard" coupled cluster DLPNO-CCSD(T) level. In the study case shown in this paper, nicotine and imidacloprid binding to the nicotinic acetylcholine receptor, our approach provides new insights into how individual amino acids in the active site determine sensitivity and selectivity of the ligands, extending and refining classical pharmacophore hypotheses. By inference, the method is applicable to any kind of host/guest interactions with potential applications in industrial biocatalysis and protein engineering.
Collapse
Affiliation(s)
- Michael Edmund Beck
- Department Computational Life Science, Bayer AG, Division Cropscience, Monheim am Rhein, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Alamiddine Z, Selvam B, Graton J, Laurent AD, Landagaray E, Lebreton J, Mathé-Allainmat M, Thany SH, Le Questel JY. Binding of Sulfoxaflor to Aplysia californica-AChBP: Computational Insights from Multiscale Approaches. J Chem Inf Model 2019; 59:3755-3769. [PMID: 31361951 DOI: 10.1021/acs.jcim.9b00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural features and binding properties of sulfoxaflor (SFX) with Ac-AChBP, the surrogate of the insect nAChR ligand binding domain (LBD), are reported herein using various complementary molecular modeling approaches (QM, molecular docking, molecular dynamics, and QM/QM'). The different SFX stereoisomers show distinct behaviors in terms of binding and interactions with Ac-AChBP. Molecular docking and Molecular Dynamics (MD) simulations highlight the specific intermolecular contacts involved in the binding of the different SFX isomers and the relative contribution of the SFX functional groups. QM/QM' calculations provide further insights and a significant refinement of the geometric and energetic contributions of the various residues leading to a preference for the SS and RR stereoisomers. Notable differences in terms of binding interactions are pointed out for the four stereoisomers. The results point out the induced fit of the Ac-AChBP binding site according to the SFX stereoisomer. In this process, the water molecules-mediated contacts play a key role, their energetic contribution being among the most important for the various stereoisomers. In all cases, the interaction with Trp147 is the major binding component, through CH···π and π···π interactions. This study provides a rationale for the binding of SFX to insect nAChR, in particular with respect to the new class of sulfoximine-based insect nAChR competitive modulators, and points out the requirements of various levels of theory for an accurate description of ligand-receptor interactions.
Collapse
Affiliation(s)
- Zakaria Alamiddine
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes , 2 rue de la Houssinière , BP 92208, Nantes F-44322 , France
| | - Balaji Selvam
- University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Roger Adams Laboratory , Urbana , Illinois 61801 , United States
| | - Jérôme Graton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes , 2 rue de la Houssinière , BP 92208, Nantes F-44322 , France
| | - Adèle D Laurent
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes , 2 rue de la Houssinière , BP 92208, Nantes F-44322 , France
| | - Elodie Landagaray
- Université d'Orléans, Institut de Chimie Organique Analytique, UMR CNRS 7311 , rue de Chartres , BP 6759, Orléans 45067 Cedex 2 , France
| | - Jacques Lebreton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes , 2 rue de la Houssinière , BP 92208, Nantes F-44322 , France
| | - Monique Mathé-Allainmat
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes , 2 rue de la Houssinière , BP 92208, Nantes F-44322 , France
| | - Steeve H Thany
- Université d'Orléans, Laboratoire Biologie des Ligneux et des Grandes Cultures, USC INRA 1328 . Rue de Chartres , BP 6759, Orléans 45067 Cedex 2 , France
| | - Jean-Yves Le Questel
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes , 2 rue de la Houssinière , BP 92208, Nantes F-44322 , France
| |
Collapse
|
11
|
Taillebois E, Cartereau A, Jones AK, Thany SH. Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 151:59-66. [PMID: 30704714 DOI: 10.1016/j.pestbp.2018.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 06/09/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the main target of neonicotinoid insecticides, which are widely used in crop protection against insect pests. Electrophysiological and molecular approaches have demonstrated the presence of several nAChR subtypes with different affinities for neonicotinoid insecticides. However, the precise mode of action of neonicotinoids on insect nAChRs remains to be elucidated. Radioligand binding studies with [3H]-α-bungarotoxin and [3H]-imidacloprid have proved instructive in understanding ligand binding interactions between insect nAChRs and neonicotinoid insecticides. The precise binding site interactions have been established using membranes from whole body and specific tissues. In this review, we discuss findings concerning the number of nAChR binding sites against neonicotinoid insecticides from radioligand binding studies on native tissues. We summarize the data available in the literature and compare the binding properties of the most commonly used neonicotinoid insecticides in several insect species. Finally, we demonstrate that neonicotinoid-nAChR binding sites are also linked to biological samples used and insect species.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Université François Rabelais de Tours, Laboratoire Nutrition, Croissance et Cancer, INSERM 1069, 37032 Tours, France
| | - Alison Cartereau
- Université d'Orléans, LBLGC USC INRA 1328, 1 rue de Chartres, 45067 Orléans, France
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Steeve H Thany
- Université d'Orléans, LBLGC USC INRA 1328, 1 rue de Chartres, 45067 Orléans, France.
| |
Collapse
|
12
|
Hopewell H, Floyd KG, Burnell D, Hancock JT, Allainguillaume J, Ladomery MR, Wilson ID. Residual ground-water levels of the neonicotinoid thiacloprid perturb chemosensing of Caenorhabditis elegans. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:981-990. [PMID: 28643160 PMCID: PMC5563336 DOI: 10.1007/s10646-017-1826-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2017] [Indexed: 05/05/2023]
Abstract
This study investigated the neurological effects of residual ground-water levels of thiacloprid on the non-target organism Caenorhabditis elegans. Nematodes treated with thiacloprid showed a dose-dependent and significantly increased twitch response at concentrations above 50 ng mL-1 that disabled their forward locomotion in liquid culture. In comparison with untreated controls, 10 ng mL-1 thiacloprid perturbed the chemosensory ability of C. elegans such that the nematodes no longer demonstrated positive chemotaxis towards a NaCl chemo-attractant, reducing their chemotaxis index from +0.48 to near to zero. Nematodes also exhibited a locomotion characteristic of those devoid of chemo-attraction, making significantly more pirouetting turns of ≥90° than the untreated controls. Compared to the untreated controls, expression of the endocytosis-associated gene, Rab-10, was also increased in C. elegans that had developed to adulthood in the presence of 10 ng mL-1 thiacloprid, suggesting their active engagement in increased recycling of affected cellular components, such as their nAChRs. Thus, even residual, low levels of this less potent neonicotinoid that may be found in field ground-water had measurable effects on a beneficial soil organism which may have environmental and ecological implications that are currently poorly understood.
Collapse
Affiliation(s)
- Hannah Hopewell
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Kieran G Floyd
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Daniel Burnell
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - John T Hancock
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Joel Allainguillaume
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Michael R Ladomery
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ian D Wilson
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
13
|
Christen V, Bachofer S, Fent K. Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1264-1270. [PMID: 27839993 DOI: 10.1016/j.envpol.2016.10.105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Among the many factors responsible for the decline of bee populations are plant protection products such as neonicotinoids. In general, bees are exposed to not only one but mixtures of such chemicals. At environmental realistic concentrations neonicotinoids may display negative effects on the immune system, foraging activity, learning and memory formation of bees. Neonicotinoids induce alterations of gene transcripts such as nicotinic acetylcholine receptor (nAChR) subunits, vitellogenin, genes of the immune system and genes linked to memory formation. While previous studies focused on individual compounds, the effect of neonicotinoid mixtures in bees is poorly known. Here we investigated the effects of neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam as single compounds, and binary mixtures thereof in honeybees. We determined transcriptional changes of nAChR subunits and vitellogenin in the brain of experimentally exposed honeybees after exposure up to 72 h. Exposure concentrations were selected on the basis of lowest effect concentrations of the single compounds. Transcriptional induction of nAChRs and vitellogenin was strongest for thiamethoxam, and weakest for acetamiprid. To a large extent, binary mixtures did not show additive transcriptional inductions but they were less than additive. Our data suggest that the joint transcriptional activity of neonicotinoids cannot be explained by concentration addition. The in vivo effects are not only governed by agonistic interaction with nAChRs alone, but are more complex as a result of interactions with other pathways as well. Further studies are needed to investigate the physiological joint effects of mixtures of neonicotinoids and other plant protection products on bees to better understand their joint effects.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Sara Bachofer
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; University Basel, Department of Pharmaceutical Sciences, Institute of Molecular and System Toxicology, CH-4056 Basel, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|
14
|
Alamiddine Z, Selvam B, Cerón-Carrasco JP, Mathé-Allainmat M, Lebreton J, Thany SH, Laurent AD, Graton J, Le Questel JY. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation. J Comput Aided Mol Des 2015; 29:1151-67. [PMID: 26589615 DOI: 10.1007/s10822-015-9884-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein (Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI-Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI-Ac-AChBP amino acid pairs.
Collapse
Affiliation(s)
- Zakaria Alamiddine
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Balaji Selvam
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.,Roger Adams Laboratory, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, 61801, USA
| | - José P Cerón-Carrasco
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.,Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Science Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, 30107, Murcia, Spain
| | - Monique Mathé-Allainmat
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jacques Lebreton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, UPRES EA 1207. Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Adèle D Laurent
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jérôme Graton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jean-Yves Le Questel
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.
| |
Collapse
|