1
|
Thommen BT, Dziekan JM, Achcar F, Tjia S, Passecker A, Buczak K, Gumpp C, Schmidt A, Rottmann M, Grüring C, Marti M, Bozdech Z, Brancucci NMB. Genetic validation of PfFKBP35 as an antimalarial drug target. eLife 2023; 12:RP86975. [PMID: 37934560 PMCID: PMC10629825 DOI: 10.7554/elife.86975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Plasmodium falciparum accounts for the majority of over 600,000 malaria-associated deaths annually. Parasites resistant to nearly all antimalarials have emerged and the need for drugs with alternative modes of action is thus undoubted. The FK506-binding protein PfFKBP35 has gained attention as a promising drug target due to its high affinity to the macrolide compound FK506 (tacrolimus). Whilst there is considerable interest in targeting PfFKBP35 with small molecules, a genetic validation of this factor as a drug target is missing and its function in parasite biology remains elusive. Here, we show that limiting PfFKBP35 levels are lethal to P. falciparum and result in a delayed death-like phenotype that is characterized by defective ribosome homeostasis and stalled protein synthesis. Our data furthermore suggest that FK506, unlike the action of this drug in model organisms, exerts its antiproliferative activity in a PfFKBP35-independent manner and, using cellular thermal shift assays, we identify putative FK506-targets beyond PfFKBP35. In addition to revealing first insights into the function of PfFKBP35, our results show that FKBP-binding drugs can adopt non-canonical modes of action - with major implications for the development of FK506-derived molecules active against Plasmodium parasites and other eukaryotic pathogens.
Collapse
Affiliation(s)
- Basil T Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Jerzy M Dziekan
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Fiona Achcar
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
- Institute for Parasitology, University of ZurichZurichSwitzerland
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | | | - Christin Gumpp
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | | | - Matthias Rottmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Christof Grüring
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
- Institute for Parasitology, University of ZurichZurichSwitzerland
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Nicolas MB Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
2
|
Atack TC, Raymond DD, Blomquist CA, Pasaje CF, McCarren PR, Moroco J, Befekadu HB, Robinson FP, Pal D, Esherick LY, Ianari A, Niles JC, Sellers WR. Targeted Covalent Inhibition of Plasmodium FK506 Binding Protein 35. ACS Med Chem Lett 2020; 11:2131-2138. [PMID: 33209191 PMCID: PMC7667655 DOI: 10.1021/acsmedchemlett.0c00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023] Open
Abstract
![]()
FK506-binding
protein 35, FKBP35, has been implicated as an essential
malarial enzyme. Rapamycin and FK506 exhibit antiplasmodium activity
in cultured parasites. However, due to the highly conserved nature
of the binding pockets of FKBPs and the immunosuppressive properties
of these drugs, there is a need for compounds that selectively inhibit
FKBP35 and lack the undesired side effects. In contrast to human FKBPs,
FKBP35 contains a cysteine, C106, adjacent to the rapamycin binding
pocket, providing an opportunity to develop targeted covalent inhibitors
of Plasmodium FKBP35. Here, we synthesize inhibitors
of FKBP35, show that they directly bind FKBP35 in a model cellular
setting, selectively covalently modify C106, and exhibit antiplasmodium
activity in blood-stage cultured parasites.
Collapse
Affiliation(s)
- Thomas C. Atack
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Donald D. Raymond
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Christa A. Blomquist
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Charisse Flerida Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick R. McCarren
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jamie Moroco
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Henock B. Befekadu
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Foxy P. Robinson
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Debjani Pal
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Lisl Y. Esherick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alessandra Ianari
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William R. Sellers
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Zhu M, Liu J, Su J, Meng B, Feng Y, Jia B, Peng T, Qi Z, Gao E. Two Mn II
, Cu II
complexes derived from 3,5-bis(1-imidazoly) pyridine: Synthesis, DNA binding, Molecular docking and cytotoxicity studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingchang Zhu
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Jiaxing Liu
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Junqi Su
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Bo Meng
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Yunhui Feng
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Bing Jia
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Tingting Peng
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Zhenzhen Qi
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Enjun Gao
- The key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| |
Collapse
|
4
|
Synthesis, structures, molecular docking, cytotoxicity and bioimaging studies of two novel Zn(II) complexes. Eur J Med Chem 2016; 121:1-11. [DOI: 10.1016/j.ejmech.2016.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/11/2016] [Accepted: 05/05/2016] [Indexed: 01/24/2023]
|
5
|
MacDonald CA, Boyd RJ. Computational insights into the suicide inhibition of Plasmodium falciparum Fk506-binding protein 35. Bioorg Med Chem Lett 2015; 25:3221-5. [PMID: 26091727 DOI: 10.1016/j.bmcl.2015.05.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 02/08/2023]
Abstract
Malaria is a parasite affecting millions of people worldwide. With the risk of malarial resistance reaching catastrophic levels, novel methods into the inhibition of this disease need to be prioritized. The exploitation of active site differences between parasitic and human peptidyl-prolyl cis/trans isomerases can be used for suicide inhibition, effectively poisoning the parasite without affecting the patient. This method of inhibition was explored using Plasmodium falciparum and Homo sapiens Fk506-binding proteins as templates for quantum mechanics/molecular mechanics calculations. Modification of the natural substrate has shown suicide inhibition is a valid approach for novel anti-malarials with little risk for parasitic resistance.
Collapse
Affiliation(s)
- Corey A MacDonald
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Russell J Boyd
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|