1
|
Lukyanova VA, Kuznetsov VV, Konstantinova NM, Dmitrenok AS, Kosaya MP, Dorofeeva OV, Druzhinina AI. Enthalpy of formation of 6-phenyl-1,5-diazabicyclo[3.1.0]hexane by combustion calorimetry and theoretical approach for efficient prediction of thermochemistry of diaziridines. Phys Chem Chem Phys 2023; 25:25289-25298. [PMID: 37701931 DOI: 10.1039/d3cp03290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The combustion energy and standard molar enthalpy of formation of crystalline 6-phenyl-1,5-diazabicyclo[3.1.0]hexane (PDABH) were determined using an isoperibolic calorimeter with a static bomb. PDABH is the first diaziridine for which the experimental value of the enthalpy of formation was obtained. This value was validated by the theoretical values of gas phase enthalpy of formation and enthalpy of sublimation. The gas phase enthalpy of formation was calculated using the DLPNO-CCSD(T1)/CBS method in conjunction with isodesmic-type reactions. This method was chosen in comparison to another high quality evaluative method (G4), which has been shown to provide unreliable results for cyclic nitrogen containing compounds. The descriptors of the molecular electrostatic potential (MEP) were used to estimate the enthalpy of sublimation of PDABH. The proposed MEP model is based on experimental enthalpies of sublimation for 75 compounds structurally similar to PDABH. The high-level ab initio calculations of gas phase enthalpies of formation combined with enthalpies of sublimations estimated using descriptors of MEP allow predicting the enthalpies of formation of diaziridines in the solid phase.
Collapse
Affiliation(s)
- Vera A Lukyanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Vladimir V Kuznetsov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Andrey S Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria P Kosaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Olga V Dorofeeva
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Anna I Druzhinina
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
2
|
Maan A, Ghule VD, Dharavath S. Computational Evaluation of Polycyclic Bis-Oxadiazolo-Pyrazine Backbone in Designing Potential Energetic Materials. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2124282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Anjali Maan
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana, India
| | - Vikas D. Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana, India
| | - Srinivas Dharavath
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
3
|
O'Connor D, Bier I, Hsieh YT, Marom N. Performance of Dispersion-Inclusive Density Functional Theory Methods for Energetic Materials. J Chem Theory Comput 2022; 18:4456-4471. [PMID: 35759249 DOI: 10.1021/acs.jctc.2c00350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular crystals of energetic materials (EMs) are denser than typical molecular crystals and are characterized by distinct intermolecular interactions between nitrogen-containing moieties. To assess the performance of dispersion-inclusive density functional theory (DFT) methods, we have compiled a data set of experimental sublimation enthalpies of 31 energetic materials. We evaluate the performance of three methods: the semilocal Perdew-Burke-Ernzerhof (PBE) functional coupled with the pairwise Tkatchenko-Scheffler (TS) dispersion correction, PBE with the many-body dispersion (MBD) method, and the PBE-based hybrid functional (PBE0) with MBD. Zero-point energy contributions and thermal effects are described using the quasi-harmonic approximation (QHA), including explicit treatment of thermal expansion, which we find to be non-negligible for EMs. The lattice energies obtained with PBE0+MBD are the closest to experimental sublimation enthalpies with a mean absolute error of 9.89 kJ/mol. However, the state-of-the-art treatment of vibrational and thermal contributions makes the agreement with experiment worse. Pressure-volume curves are also examined for six representative materials. For pressure-volume curves, all three methods provide reasonable agreement with experimental data with mean absolute relative errors of 3% or less. Most of the intermolecular interactions typical of EMs, namely nitro-amine, nitro-nitro, and nitro-hydrogen interactions, are more sensitive to the choice of the dispersion method than to the choice of the exchange-correlation functional. The exception is π-π stacking interactions, which are also very sensitive to the choice of the functional. Overall, we find that PBE+TS, PBE+MBD, and PBE0+MBD do not perform as well for energetic materials as previously reported for other classes of molecular crystals. This highlights the importance of testing dispersion-inclusive DFT methods for diverse classes of materials and the need for further method development.
Collapse
Affiliation(s)
- Dana O'Connor
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Imanuel Bier
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yun-Ting Hsieh
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Wang L, Zhai L, She W, Wang M, Zhang J, Wang B. Synthetic Strategies Toward Nitrogen-Rich Energetic Compounds Via the Reaction Characteristics of Cyanofurazan/Furoxan. Front Chem 2022; 10:871684. [PMID: 35372281 PMCID: PMC8968789 DOI: 10.3389/fchem.2022.871684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
The structural units of amino-/cyano-substituted furazans and furoxans played significant roles in the synthesis of nitrogen-rich energetic compounds. This account focused on the synthetic strategies toward nitrogen-rich energetic compounds through the transformations based on cyanofurazan/furoxan structures, including 3-amino-4-cyanofurazan, 4-amino-3-cyano furoxan, 3,4-dicyanofurazan, and 3,4-dicyanofuroxan. The synthetic strategies toward seven kinds of nitrogen-rich energetic compounds, such as azo (azoxy)-bridged, ether-bridged, methylene-bridged, hybrid furazan/furoxan-tetrazole–based, tandem furoxan–based, hybrid furazan-isofurazan–based, hybrid furoxan-isoxazole–based and fused framework–based energetic compounds were fully reviewed, with the corresponding reaction mechanisms toward the nitrogen-rich aromatic frameworks and examples of using the frameworks to create high energetic substances highlighted and discussed. The energetic properties of typical nitrogen-rich energetic compounds had also been compared and summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Bozhou Wang
- *Correspondence: Junlin Zhang, ; Bozhou Wang,
| |
Collapse
|
5
|
Muravyev NV. What Shall We Do with the Computed Detonation Performance? Comment on “1,3,4‐Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level”. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nikita V. Muravyev
- Laboratory of Energetic Materials Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences 4 Kosygina Str. 119991 Moscow Russia
| |
Collapse
|
6
|
Muravyev NV. What Shall We Do with the Computed Detonation Performance? Comment on “1,3,4‐Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level”. Angew Chem Int Ed Engl 2021; 60:11568-11570. [DOI: 10.1002/anie.202104041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Nikita V. Muravyev
- Laboratory of Energetic Materials Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences 4 Kosygina Str. 119991 Moscow Russia
| |
Collapse
|
7
|
Lempert DB, Volokhov VM, Zyuzin IN, Kazakov AI, Volokhov AV, Amosova ES, Zyubina TS, Yanovskii LS. Regularities in the Dependence of the Enthalpies of Formation of Certain Conjugated Polynitrogen Heterocyclic Compounds on Their Structure. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427220120071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Abraham MH, Acree WE, Liu X. Descriptors for High‐Energy Nitro Compounds; Estimation of Thermodynamic, Physicochemical and Environmental Properties. PROPELLANTS EXPLOSIVES PYROTECHNICS 2021. [DOI: 10.1002/prep.202000117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael H. Abraham
- Department of Chemistry University College London, 20 Gordon St London WC1H, 0AJ UK
| | - William E. Acree
- Department of Chemistry 1155 Union Circle Drive #305070 University of North Texas Denton, TX 76203-5017 USA
| | - Xiangli Liu
- School of Pharmacy and Medical Sciences Faculty of Life Sciences University of Bradford Bradford BD7 1DP UK
| |
Collapse
|
9
|
Muravyev NV, Monogarov KA, Melnikov IN, Pivkina AN, Kiselev VG. Learning to fly: thermochemistry of energetic materials by modified thermogravimetric analysis and highly accurate quantum chemical calculations. Phys Chem Chem Phys 2021; 23:15522-15542. [PMID: 34286759 DOI: 10.1039/d1cp02201f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The standard state enthalpy of formation and the enthalpy of sublimation are essential thermochemical parameters determining the performance and application prospects of energetic materials (EM). Direct experimental measurements of these properties are complicated by low volatility and high heat release in bomb calorimetry experiments. As a result, the uncertainties in the reported enthalpies of formation for a number of even well-known CHNO-containing compounds might amount up to tens kJ mol-1, while for some novel high-nitrogen molecules they reach even hundreds of kJ mol-1. The present study reports a facile approach to determining the solid-state formation enthalpies comprised of complementary high-level quantum chemical calculations of the gas-phase thermochemistry and advanced thermal analysis techniques yielding sublimation enthalpies. The thermogravimetric procedure for the measurement of sublimation enthalpy was modified by using low external pressures (down to 0.2 Pa). This allows for observing sublimation/vaporization instead of thermal decomposition of the compounds studied. Extensive benchmarking on nonenergetic and energetic compounds reveals the average and maximal absolute errors of the sublimation enthalpies of 3.3 and 11.0 kJ mol-1, respectively. The comparison of the results with those obtained from the widely used Trouton-Williams empirical equation shows that the latter underestimates the sublimation enthalpy up to 140 kJ mol-1. Therefore, we performed a reparametrization of the latter equation with simple chemical descriptors that reduces the mean error down to 30 kJ mol-1. Highly accurate multi-level procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were used to calculate theoretically the gas-phase formation enthalpies. In several cases, the DLPNO-CCSD(T) enthalpies of isodesmic reactions were also employed to obtain the gas-phase thermochemistry for medium-sized important EMs. Combining the obtained thermochemical properties, we determined the solid-state enthalpies of formation for nearly 60 species containing various important explosophoric groups, from common nitroaromatics, nitroethers, and nitramines to novel nitrogen-rich heterocyclic species (e.g., the derivatives of pyrazole, tetrazole, furoxan, etc.). The large-scale benchmarking against the available experimental solid-state enthalpies of formation yielded the maximal inaccuracy of the proposed method of 25 kJ mol-1.
Collapse
Affiliation(s)
- Nikita V Muravyev
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Konstantin A Monogarov
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Igor N Melnikov
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Alla N Pivkina
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Vitaly G Kiselev
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia. and Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia and Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Gorn MV, Gritsan NP, Goldsmith CF, Kiselev VG. Thermal Stability of Bis-Tetrazole and Bis-Triazole Derivatives with Long Catenated Nitrogen Chains: Quantitative Insights from High-Level Quantum Chemical Calculations. J Phys Chem A 2020; 124:7665-7677. [DOI: 10.1021/acs.jpca.0c04985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Margarita V. Gorn
- Novosibirsk State University, 1 Pirogova Street, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Street, Novosibirsk 630090, Russia
| | - Nina P. Gritsan
- Novosibirsk State University, 1 Pirogova Street, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Street, Novosibirsk 630090, Russia
| | - C. Franklin Goldsmith
- Brown University, School of Engineering, 184 Hope Street, Providence, Rhode Island 02912, United States
| | - Vitaly G. Kiselev
- Novosibirsk State University, 1 Pirogova Street, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Street, Novosibirsk 630090, Russia
- Brown University, School of Engineering, 184 Hope Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
11
|
Kiselev VG, Goldsmith CF. Accurate Thermochemistry of Novel Energetic Fused Tricyclic 1,2,3,4-Tetrazine Nitro Derivatives from Local Coupled Cluster Methods. J Phys Chem A 2019; 123:9818-9827. [DOI: 10.1021/acs.jpca.9b08356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vitaly G. Kiselev
- School of Engineering, Brown University, 184 Hope Str., Providence, Rhode Island 02912, United States
- Semenov Institute of Chemical Physics RAS, 4 Kosygina Str., 119991 Moscow, Russia
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - C. Franklin Goldsmith
- School of Engineering, Brown University, 184 Hope Str., Providence, Rhode Island 02912, United States
| |
Collapse
|
12
|
Lai T, Pencheva K, Chow E, Docherty R. De-Risking Early-Stage Drug Development With a Bespoke Lattice Energy Predictive Model: A Materials Science Informatics Approach to Address Challenges Associated With a Diverse Chemical Space. J Pharm Sci 2019; 108:3176-3186. [DOI: 10.1016/j.xphs.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 06/12/2019] [Indexed: 01/11/2023]
|
13
|
Ryzhova ON, Dorofeeva OV. Predicting the Enthalpies of Sublimation of Cyclic Urea Derivatives Using a Model of the Molecular Electrostatic Potential. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Dallaston MA, Brusnahan JS, Wall C, Williams CM. Thermal and Sensitiveness Determination of Cubanes: Towards Cubane-Based Fuels for Infrared Countermeasures. Chemistry 2019; 25:8344-8352. [PMID: 31124182 DOI: 10.1002/chem.201901086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/17/2019] [Indexed: 11/06/2022]
Abstract
As infrared seeking technology evolves, threats are better able to distinguish defensive infrared (IR) flares from true targets. Spectrally matched flares, which generally employ carbon-based fuels, are better able to decoy some advanced missiles by more closely mimicking the IR emission of the target. Cubane is a high-energy carbon-based scaffold which may be suitable for use as a fuel in spectrally matched flares. The enthalpy of formation and strain energy of a series of cubanes was predicted in silico, and their thermal and impact stability examined. All were found to undergo highly exothermic decomposition in sealed cell differential scanning calorimetry, and two cubanes subsequently underwent quantitative sensitiveness testing. Despite their F of I values being in the secondary explosive range, cubane-1,4-dicarboxylic acid (F of I=70) and 4-carbamoylcubane-1-carboxylic acid (F of I=90) were identified as potentially useful fuels for pyrotechnic infrared countermeasure flare formulations.
Collapse
Affiliation(s)
- Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Jason S Brusnahan
- Defence Science and Technology Group, Edinburgh, South Australia, 5111, Australia
| | - Craig Wall
- Defence Science and Technology Group, Edinburgh, South Australia, 5111, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
15
|
High pressure behavior of crystal [2,2'-bi(1,3,4-oxadiazole)]-5,5'-dinitramide: A DFT investigation. J Mol Graph Model 2019; 90:87-93. [PMID: 31031220 DOI: 10.1016/j.jmgm.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 11/22/2022]
Abstract
Density functional theory (DFT) computation was carried out to investigate the crystal, molecular and electronic structures of high energy crystal [2,2'-bi(1,3,4-oxadiazole)]-5,5'-dinitramide (BODN) with the pressure 0-120 GPa. The relaxed crystal structure by the GGA/PBE-TS functional matches well with the experimental data at ambient pressure condition. With the intensifying of pressure, the lattice parameters, volumes, bond lengths, H-bond energies, atomic charges, bond populations, band gaps and density of states of crystal BODN change gently. Under the pressure of 48, 104, and 107 GPa, three pressure-induced transformations occurred. The intramolecular six membered rings pose strong affect in stabilizing systems in the pressure range 0-120 GPa. Between O1 and H2 atoms, the H-bond interaction transforms into covalent interaction under the circumstance of 48 GPa. At 104 GPa, structural transformation occurs with the distortion of the intramolecular six membered ring. In addition, O1⋅⋅⋅H2 and O2⋅⋅⋅H1 have the largest H-bond energies in comparison with the others. When the pressure reaches 107 GPa, the H-bond O1⋅⋅⋅H2 is formed again with the deformation and non-coplanarity of two oxadiazoles in crystal BODN. The electrons can be moved easily based on the density of states and energy bands under high pressure. Helpful information will be conveyed by this work in the field of further analysis connected the pressure effect on molecular transformations.
Collapse
|
16
|
|
17
|
Mathieu D. Accurate or Fast Prediction of Solid-State Formation Enthalpies Using Standard Sublimation Enthalpies Derived From Geometrical Fragments. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Marochkin II, Altova EP, Chilingarov NS, Vilkova AL, Shishkov IF. Determination of molar enthalpy of sublimation in case of orotic acid as obtained from experimental and computational data. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Dorofeeva OV, Ryzhova ON, Suchkova TA. Enthalpies of Formation of Hydrazine and Its Derivatives. J Phys Chem A 2017. [DOI: 10.1021/acs.jpca.7b04914] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Olga V. Dorofeeva
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Oxana N. Ryzhova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Taisiya A. Suchkova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|