1
|
He S, Bai J, Liu Y, Zeng Y, Wang L, Chen X, Wang J, Weng J, Zhao Y, Peng W, Zhi W. A polyglutamic acid/tannic acid-based nano drug delivery system: Antibacterial, immunoregulation and sustained therapeutic strategies for oral ulcers. Int J Pharm 2023; 648:123607. [PMID: 37967688 DOI: 10.1016/j.ijpharm.2023.123607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Oral ulcers are a common inflammatory mucosal ulcer, and the moist and dynamic environment in the oral cavity makes topical pharmacological treatment of oral ulcers challenging. Herein, oral ulcer tissue adhesion nanoparticles were prepared by using esterification reaction between polyglutamic acid and tannic acid, and at the same time doxycycline hydrochloride was loaded into the nanoparticles. The obtained slow drug release effect of the drug-loaded nanoparticles reduced the toxicity of the drug, and by penetrating into the fine crevice region of the wound tissue and adhering to it, they could in-situ release the carried drug more effectively and thus have shown significant antibacterial effects. In addition, tannic acid in the system conferred adhesion, antioxidant and immune regulation activities to the nanocarriers. A rat oral ulcer model based on fluorescent labeling was established to investigate the retention of nanoparticles at the ulcer, and the results showed that the retention rate of drug-loaded nanoparticles at the ulcer was 17 times higher than that of pure drug. Due to the antibacterial and immune regulation effects of the drug-loaded nanoparticles, the healing of oral ulcer wounds was greatly accelerated. Such application of doxycycline hydrochloride loaded polyglutamic acid/tannic acid nanoparticles is a novel and effective treatment strategy for oral ulcer.
Collapse
Affiliation(s)
- Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhao Liu
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linyu Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiangli Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
2
|
Aracena A, Rezende MC, García M, Muñoz-Becerra K, Wrighton-Araneda K, Valdebenito C, Celis F, Vásquez O. Alkylated Benzodithienoquinolizinium Salts as Possible Non-Fullerene Organic N-Type Semiconductors: An Experimental and Theoretical Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6239. [PMID: 34771765 PMCID: PMC8584425 DOI: 10.3390/ma14216239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Three photobicyclized benzodithienoquinolizinium tetrafluoroborates (BPDTQBF4) were prepared and evaluated by UV-Vis and fluorescence spectral, electrochemical analysis, and by theoretical calculations as possible organic n-type semiconductors. Evaluation and comparison of their LUMO levels, HOMO-LUMO energy gaps as monomeric and π-stacked dimers with those of other materials, suggest their potential as organic n-type semiconductors. Calculations of their relative charge carrier mobilities confirmed this potential for one derivative with a long (C-14) alkyl chain appended to the polycyclic planar π-system.
Collapse
Affiliation(s)
- Andrés Aracena
- Instituto de Ciencias Naturales, Universidad de las Américas, Manuel Montt 948, Santiago 7500000, Chile
| | - Marcos Caroli Rezende
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile;
| | - Macarena García
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (M.G.); (F.C.)
| | - Karina Muñoz-Becerra
- Dirección de Investigación y Postgrado, Universidad de Aconcagua, Pedro de Villagra 2265, Santiago 7630000, Chile;
| | - Kerry Wrighton-Araneda
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Santiago 8940577, Chile;
| | - Cristian Valdebenito
- Centro Integrativo de Química y Biología Aplicada (CIBQA), Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8320000, Chile;
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (M.G.); (F.C.)
| | - Octavio Vásquez
- Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8320000, Chile;
| |
Collapse
|
3
|
Chibac-Scutaru AL, Cojocaru C, Coroabă A, Roman G, Săcărescu G, Simionescu M, Săcărescu L. Nano-assembled oligosilane–pyrazoline structures and their optical properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Substituent effect of the stacking interaction between carbon monoxide and benzene. J Mol Model 2018; 24:136. [PMID: 29802459 DOI: 10.1007/s00894-018-3674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Noncovalent interactions (NCIs) between carbon monoxide and substituted benzene were investigated at the M06-2X/6-311++G(d,p) level. rThe results of interaction energy analysis indicated different effects for the electron-donating (-NH2, -OH, -CH3) and electron-withdrawing (-F, -CN, -NO2) groups on the CO⋯PhX complex. Atoms in molecules analysis confirmed the NCIs between CO and PhX. NCI analysis revealed that these interactions belong to van der Waals interactions. The electron density shift of the complexes was investigated with electron density difference analysis. Ternary CO⋯PhX⋯Bz complexes were designed to study the interplay between CO⋯π and π⋯π stacking interactions.
Collapse
|