1
|
El-Jundi I, Daoud S, Taha MO. Discovery of novel chemotype inhibitors targeting Anaplastic Lymphoma Kinase receptor through ligand-based pharmacophore modelling. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:795-815. [PMID: 39382553 DOI: 10.1080/1062936x.2024.2406398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase within the insulin receptor superfamily. Alterations in ALK, such as rearrangements, mutations, or amplifications, have been detected in various tumours, including lymphoma, neuroblastoma, and non-small cell lung cancer. In this study, we outline a computational workflow designed to uncover new inhibitors of ALK. This process starts with a ligand-based exploration of the pharmacophoric space using 13 diverse sets of ALK inhibitors. Subsequently, quantitative structure-activity relationship (QSAR) modelling is employed in combination with a genetic function algorithm to identify the optimal combination of pharmacophores and molecular descriptors capable of elucidating variations in anti-ALK bioactivities within a compiled list of inhibitors. The successful QSAR model revealed three pharmacophores, two of which share three similar features, prompting their merger into a single pharmacophore model. The merged pharmacophore was used as a 3D search query to mine the National Cancer Institute (NCI) database for novel anti-ALK leads. Subsequent in vitro bioassay of the top 40 hits identified two compounds with low micromolar IC50 values. Remarkably, one of the identified leads possesses a novel chemotype compared to known ALK inhibitors.
Collapse
Affiliation(s)
| | - S Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan
| | - M O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Sulaibi MA, Zahra J, Bardaweel S, El Abadleh M, Taha MO. Docking-guided exploration of the anti-flt3 potential of isoindigo derivatives towards potential treatments of acute myeloid leukemia. Med Chem Res 2024. [DOI: 10.1007/s00044-024-03259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
|
3
|
Banat R, Daoud S, Taha MO. Ligand-based pharmacophore modeling and machine learning for the discovery of potent aurora A kinase inhibitory leads of novel chemotypes. Mol Divers 2024:10.1007/s11030-024-10814-y. [PMID: 38446372 DOI: 10.1007/s11030-024-10814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Aurora-A (AURKA) is serine/threonine protein kinase involved in the regulation of numerous processes of cell division. Numerous studies have demonstrated strong association between AURKA and cancer. AURKA is overexpressed in many cancers, such as colon, breast and prostate cancers. Consequently, AURKA has emerged as promising target for therapeutic intervention in cancer management. Herein, we describe a computational workflow for the discovery of novel anti-AURKA inhibitory leads starting with ligand-based assessment of the pharmacophoric space of six diverse sets of inhibitors. Subsequently, machine learning/QSAR modeling was coupled with genetic function algorithm to search for the best possible combination of machine learner, ligand-based pharmacophore(s) and molecular descriptors capable of explaining variation in anti-AURKA bioactivities within a collected list of inhibitors. Two learners succeeded in achieving acceptable structure/activity correlations, namely, random forests and extreme gradient boosting (XGBoost). Three pharmacophores emerged in the successful ML models. These were then used as 3D search queries to mine the National Cancer Institute database for novel anti-AURKA leads. Top-ranking 38 hits were assessed in vitro for their anti-AURKA bioactivities. Among them, three compounds exhibited promising dose-response curves, demonstrating experimental IC50 values ranging from sub-micromolar to low micromolar values. Remarkably, two of these compounds are of novel chemotypes.
Collapse
Affiliation(s)
- Rajaa Banat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
4
|
Al-Sha'er MA, Basheer HA, Taha MO. Discovery of new PKN2 inhibitory chemotypes via QSAR-guided selection of docking-based pharmacophores. Mol Divers 2023; 27:443-462. [PMID: 35507210 DOI: 10.1007/s11030-022-10434-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Serine/threonine-protein kinase N2 (PKN2) plays an important role in cell cycle progression, cell migration, cell adhesion and transcription activation signaling processes. In cancer, however, it plays important roles in tumor cell migration, invasion and apoptosis. PKN2 inhibitors have been shown to be promising in treating cancer. This prompted us to model this interesting target using our QSAR-guided selection of docking-based pharmacophores approach where numerous pharmacophores are extracted from docked ligand poses and allowed to compete within the context of QSAR. The optimal pharmacophore was sterically-refined, validated by receiver operating characteristic (ROC) curve analysis and used as virtual search query to screen the National Cancer Institute (NCI) database for new promising anti-PKN2 leads of novel chemotypes. Three low micromolar hits were identified with IC50 values ranging between 9.9 and 18.6 µM. Pharmacological assays showed promising cytotoxic properties for active hits in MTT and wound healing assays against MCF-7 and PANC-1 cancer cells.
Collapse
Affiliation(s)
- Mahmoud A Al-Sha'er
- Faculty of Pharmacy, Zarqa University, P.O. Box 132222, Zarqa, 13132, Jordan.
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, P.O. Box 132222, Zarqa, 13132, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
5
|
Ashram M, Habashneh AY, Bardaweel S, Taha MO. A Click Synthesis, Molecular Docking and Biological Evaluation of 1,2,3-triazoles-benzoxazepine hybrid as potential anticancer agents. Med Chem Res 2022. [DOI: 10.1007/s00044-022-03001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Alabed SJ, Zihlif M, Taha M. Discovery of new potent lysine specific histone demythelase-1 inhibitors (LSD-1) using structure based and ligand based molecular modelling and machine learning. RSC Adv 2022; 12:35873-35895. [PMID: 36545090 PMCID: PMC9751883 DOI: 10.1039/d2ra05102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Lysine-specific histone demethylase 1 (LSD-1) is an epigenetic enzyme that oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4 of histone H3 and is highly overexpressed in different types of cancer. Therefore, it has been widely recognized as a promising therapeutic target for cancer therapy. Towards this end, we employed various Computer Aided Drug Design (CADD) approaches including pharmacophore modelling and machine learning. Pharmacophores generated by structure-based (SB) (either crystallographic-based or docking-based) and ligand-based (LB) (either supervised or unsupervised) modelling methods were allowed to compete within the context of genetic algorithm/machine learning and were assessed by Shapley additive explanation values (SHAP) to end up with three successful pharmacophores that were used to screen the National Cancer Institute (NCI) database. Seventy-five NCI hits were tested for their LSD-1 inhibitory properties against neuroblastoma SH-SY5Y cells, pancreatic carcinoma Panc-1 cells, glioblastoma U-87 MG cells and in vitro enzymatic assay, culminating in 3 nanomolar LSD-1 inhibitors of novel chemotypes.
Collapse
Affiliation(s)
- Shada J Alabed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, University of Jordan Amman Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman Jordan
| |
Collapse
|
7
|
Saleh MM, Abuirmeileh AN, Al-Rousan RM, Abudoleh SM, Hassouneh LK, Zihlif MA, Taha MO, Abutayeh RF, Mansour H, Abu-Irmaileh B. Biological Evaluation and Reverse Pharmacophore Mapping of Innovative Bis-Triazoles as Promising Anticancer Agents. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2022; 16. [DOI: 10.2174/18741045-v16-e2207200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 07/10/2024]
Abstract
Here, we describe further cytotoxic studies and reverse pharmacophore mapping (pharmacophore profiling) for bis-triazoles MS44-53, which were designed and synthesized previously to stabilize the G-quadruplex nucleic acids capable of being formed at the telomeric region and promoter sequences of genes involved in cellular proliferation and oncogenes. Pharmacophore-based activity profiling screen demonstrated some biological targets that MS44-53 may modulate their biological response, and thus can be considered as potential drugs to treat different kinds of diseases, such as carcinoma, diabetes type II, bacterial infection and cardiovascular diseases. Potent cell growth inhibitory properties were shown by ligands MS47 and MS49 against human melanoma MDA-MB-435, colon cancer HCT-116 and COLO 205, and pancreatic cancer MIA PaCa-2 cell lines, as evidenced by MTT assay. Both ligands were more potent against cancer cells than in skin normal CCD-1064Sk fibroblasts.
Aim:
The aim of this study is to identify the molecular target and mechanism of action of our promising anticancer bis-triazoles MS44-53, focusing specifically on the G-quadruplex stabilizers MS47 and MS49.
Background:
In molecular biology, G-quadruplexes (also known as G4-DNA), one of the higher-order structures of polynucleotides, are four stranded structures formed by nucleic acid sequences which are rich in guanine. They are formed mainly at the single-stranded G-overhang of telomeric DNA and within promoter sequences of genes involved in cellular proliferation and oncogenes such as c-myc, c-kit, and Hsp90. Stabilization of DNA G-quadruplexes is one of the anticancer strategies that has the potential to treat all cancers regardless of the type. A new series of bis-triazoles MS44-53 were developed to stabilize G-quadruplex structures selectively, as G4 ligands and experimental antitumour agents. FRET assay showed that MS47 and MS49 were only the best binders towards the Hsp90 promoter G-guadruplexes. While all bis-triazoles MS44-53 exhibited potent cell growth inhibitory activity against human carcinoma cell lines, suggesting that the ligands perturb molecular targets and mechanisms of action, other than stabilizing G-quadruplexes, contributing to antitumor activity. Therefore, the molecular targets and mechanisms of action of bis-triazoles MS44-53 in different types of human cancer cell lines should be determined by performing further computational studies to MS44-53 and in vitro evaluations for the G-quadruplex stabilizers MS47 and MS49.
Objectives:
1- Determining the exact IC50 for bis-triazoles MS47 & MS49 against four different types of human cancer cell lines; melanoma MDA-MB-435, pancreatic cancer MIA PaCa-2, and colon cancer HCT-116 and COLO 205 cell lines.
2- Predicting the biological targets that bis-triazoles MS44-53 may interact with to trigger or block their biological response.
Methods:
1- MTT assay was used for in vitro evaluation of the antiproliferative activities of MS47 and MS49, and determination of IC50 values.
2- Reverse pharmacophore mapping (pharmacophore profiling) was used for predicting the biological targets of bis-triazoles MS44-53, and determining the % binding probabilities.
Results:
MS49 exhibited more potent proliferation inhibitory activity than MS47 and higher IC50 value against skin normal fibroblasts. Pharmacophore profiling demonstrated FGFR1, PDGFR2, FLT3, mTOR, PPAR-gamma, MUR-F and CETP as biological targets for bis-triazoles MS44-53.
Conclusion:
Bis-triazoles MS47 and MS49 are promising selective innovative compounds with wide spectrum cytotoxic activities against distinct cancer types. Bis-triazoles MS44-53 can be considered as potential drugs to treat different types of carcinoma, in addition to diabetes type II, bacterial infection and cardiovascular diseases.
Other:
Further in vitro evaluations will be performed for bis-triazoles MS44-53 in order to identify their molecular targets and mechanisms of action in different types of human cancer cell lines.
Collapse
|
8
|
Exploiting activity cliffs for building pharmacophore models and comparison with other pharmacophore generation methods: sphingosine kinase 1 as case study. J Comput Aided Mol Des 2022; 36:39-62. [PMID: 35059939 DOI: 10.1007/s10822-021-00435-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
|
9
|
Structure-based discovery of new polo-like kinase 1 (PLK1) inhibitors as potential anticancer agents via docking-based comparative intermolecular contacts analysis (dbCICA). Med Chem Res 2021. [DOI: 10.1007/s00044-021-02774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Hijjawi MS, Abutayeh RF, Taha MO. Structure-Based Discovery and Bioactivity Evaluation of Novel Aurora-A Kinase Inhibitors as Anticancer Agents via Docking-Based Comparative Intermolecular Contacts Analysis (dbCICA). Molecules 2020; 25:molecules25246003. [PMID: 33353031 PMCID: PMC7766225 DOI: 10.3390/molecules25246003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
Aurora-A kinase plays a central role in mitosis, where aberrant activation contributes to cancer by promoting cell cycle progression, genomic instability, epithelial-mesenchymal transition, and cancer stemness. Aurora-A kinase inhibitors have shown encouraging results in clinical trials but have not gained Food and Drug Administration (FDA) approval. An innovative computational workflow named Docking-based Comparative Intermolecular Contacts Analysis (dbCICA) was applied—aiming to identify novel Aurora-A kinase inhibitors—using seventy-nine reported Aurora-A kinase inhibitors to specify the best possible docking settings needed to fit into the active-site binding pocket of Aurora-A kinase crystal structure, in a process that only potent ligands contact critical binding-site spots, distinct from those occupied by less-active ligands. Optimal dbCICA models were transformed into two corresponding pharmacophores. The optimal one, in capturing active hits and discarding inactive ones, validated by receiver operating characteristic analysis, was used as a virtual in-silico search query for screening new molecules from the National Cancer Institute database. A fluorescence resonance energy transfer (FRET)-based assay was used to assess the activity of captured molecules and five promising Aurora-A kinase inhibitors were identified. The activity was next validated using a cell culture anti-proliferative assay (MTT) and revealed a most potent lead 85(NCI 14040) molecule after 72 h of incubation, scoring IC50 values of 3.5–11.0 μM against PANC1 (pancreas), PC-3 (prostate), T-47D and MDA-MB-231 (breast)cancer cells, and showing favorable safety profiles (27.5 μM IC50 on fibroblasts). Our results provide new clues for further development of Aurora-A kinase inhibitors as anticancer molecules.
Collapse
Affiliation(s)
- Majd S Hijjawi
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
11
|
Daoud S, Taha MO. Pharmacophore modeling of JAK1: A target infested with activity-cliffs. J Mol Graph Model 2020; 99:107615. [PMID: 32339898 DOI: 10.1016/j.jmgm.2020.107615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Janus kinase 1 (JAK1) is protein kinase involved in autoimmune diseases (AIDs). JAK1 inhibitors have shown promising results in treating AIDs. JAK1 inhibitors are known to exhibit regions of SAR discontinuity or activity cliffs (ACs). ACs represent fundamental challenge to successful QSAR/pharmacophore modeling because QSAR modeling rely on the basic premise that activity is a smooth continuous function of structure. We propose that ACs exist because active ACs members exhibit subtle, albeit critical, enthalpic features absent from their inactive twins. In this context we compared the performances of two computational modeling workflows in extracting valid pharmacophores from 151 diverse JAK1 inhibitors that include ACs: QSAR-guided pharmacophore selection versus docking-based comparative intermolecular contacts analysis (db-CICA). The two methods were judged based on the receiver operating characteristic (ROC) curves of their corresponding pharmacophore models and their abilities to distinguish active members among established JAK1 ACs. db-CICA modeling significantly outperformed ligand-based pharmacophore modeling. The resulting optimal db-CICA pharmacophore was used as virtual search query to scan the National Cancer Institute (NCI) database for novel JAK1 inhibitory leads. The most active hit showed IC50 of 1.04 μM. This study proposes the use of db-CICA modeling as means to extract valid pharmacophores from SAR data infested with ACs.
Collapse
Affiliation(s)
- Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
12
|
Abutayeh RF, Almaliti J, Taha MO. Design and Synthesis of New Sulfonamides-Based Flt3 Inhibitors. Med Chem 2020; 16:403-412. [PMID: 30931863 DOI: 10.2174/1573406415666190401144053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/21/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Background:
Flt3 is an oncogenic kinase involved in different leukemias. It is most
prominently associated with acute myeloid leukemia (AML). Flt3-specific inhibitors have shown
promising results in interfering with AML.
Methods:
The crystallographic structures of two inhibitors complexed within Flt3, namely, quizartinib
and F6M, were used to guide the synthesis of new sulfonamide-based Flt3 inhibitors.
Results:
One of the prepared compounds showed low micromolar anti-Flt3 bioactivity, and interestingly,
low micromolar bioactivity against the related oncogenic kinase VEGFR2.
Conclusion:
Sulfonamides were successfully used as privileged scaffolds for the synthesis of
novel Flt3 inhibitors of micromolar potencies.
Collapse
Affiliation(s)
- Reem F. Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Jehad Almaliti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Mutasem O. Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
13
|
Tuffaha GO, Hatmal MM, Taha MO. Discovery of new JNK3 inhibitory chemotypes via QSAR-Guided selection of docking-based pharmacophores and comparison with other structure-based pharmacophore modeling methods. J Mol Graph Model 2019; 91:30-51. [PMID: 31158642 DOI: 10.1016/j.jmgm.2019.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
|
14
|
Al-Barghouthy EY, Abuhammad A, Taha MO. QSAR-guided pharmacophore modeling and subsequent virtual screening identify novel TYK2 inhibitor. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|