1
|
Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. The enhancement scheme for the predictive ability of QSAR: A case of mutagenicity. Toxicol In Vitro 2023:105629. [PMID: 37307858 DOI: 10.1016/j.tiv.2023.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Mutagenicity is one of the most dangerous properties from the point of view of medicine and ecology. Experimental determination of mutagenicity remains a costly process, which makes it attractive to identify new hazardous compounds based on available experimental data through in silico methods or quantitative structure-activity relationships (QSAR). A system for constructing groups of random models is proposed for comparing various molecular features extracted from SMILES and graphs. For mutagenicity (mutagenicity values were expressed by the logarithm of the number of revertants per nanomole assayed by Salmonella typhimurium TA98-S9 microsomal preparation) models, the Morgan connectivity values are more informative than the comparison of quality for different rings in molecules. The resulting models were tested with the previously proposed model self-consistency system. The average value of the determination coefficient for the validation set is 0.8737 ± 0.0312.
Collapse
Affiliation(s)
- Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Alessandra Roncaglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
2
|
Soleymani N, Ahmadi S, Shiri F, Almasirad A. QSAR and molecular docking studies of isatin and indole derivatives as SARS 3CL pro inhibitors. BMC Chem 2023; 17:32. [PMID: 37024955 PMCID: PMC10079496 DOI: 10.1186/s13065-023-00947-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The 3C-like protease (3CLpro), known as the main protease of SARS-COV, plays a vital role in the viral replication cycle and is a critical target for the development of SARS inhibitor. Comparative sequence analysis has shown that the 3CLpro of two coronaviruses, SARS-CoV-2 and SARS-CoV, show high structural similarity, and several common features are shared among the substrates of 3CLpro in different coronaviruses. The goal of this study is the development of validated QSAR models by CORAL software and Monte Carlo optimization to predict the inhibitory activity of 81 isatin and indole-based compounds against SARS CoV 3CLpro. The models were built using a newer objective function optimization of this software, known as the index of ideality correlation (IIC), which provides favorable results. The entire set of molecules was randomly divided into four sets including: active training, passive training, calibration and validation sets. The optimal descriptors were selected from the hybrid model by combining SMILES and hydrogen suppressed graph (HSG) based on the objective function. According to the model interpretation results, eight synthesized compounds were extracted and introduced from the ChEMBL database as good SARS CoV 3CLpro inhibitor. Also, the activity of the introduced molecules further was supported by docking studies using 3CLpro of both SARS-COV-1 and SARS-COV-2. Based on the results of ADMET and OPE study, compounds CHEMBL4458417 and CHEMBL4565907 both containing an indole scaffold with the positive values of drug-likeness and the highest drug-score can be introduced as selected leads.
Collapse
Affiliation(s)
- Niousha Soleymani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahin Ahmadi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Toropov AA, Di Nicola MR, Toropova AP, Roncaglioni A, Carnesecchi E, Kramer NI, Williams AJ, Ortiz-Santaliestra ME, Benfenati E, Dorne JLCM. A regression-based QSAR-model to predict acute toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica): Calibration, validation, and future developments to support risk assessment of chemicals in amphibians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154795. [PMID: 35341855 PMCID: PMC9535814 DOI: 10.1016/j.scitotenv.2022.154795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 04/15/2023]
Abstract
Amphibian populations are undergoing a global decline worldwide. Such decline has been attributed to their unique physiology, ecology, and exposure to multiple stressors including chemicals, temperature, and biological hazards such as fungi of the Batrachochytrium genus, viruses such as Ranavirus, and habitat reduction. There are limited toxicity data for chemicals available for amphibians and few quantitative structure-activity relationship (QSAR) models have been developed and are publicly available. Such QSARs provide important tools to assess the toxicity of chemicals particularly in a data poor context. QSARs provide important tools to assess the toxicity of chemicals particularly when no toxicological data are available. This manuscript provides a description and validation of a regression-based QSAR model to predict, in a quantitative manner, acute lethal toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica). QSAR models for acute median lethal molar concentrations (LC50-12 h) of waterborne chemicals using the Monte Carlo method were developed. The statistical characteristics of the QSARs were described as average values obtained from five random distributions into training and validation sets. Predictions from the model gave satisfactory results for the overall training set (R2 = 0.72 and RMSE = 0.33) and were even more robust for the validation set (R2 = 0.96 and RMSE = 0.11). Further development of QSAR models in amphibians, particularly for other life stages and species, are discussed.
Collapse
Affiliation(s)
- Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Matteo R Di Nicola
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; Toxicology Division, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands.
| | - Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Alessandra Roncaglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Edoardo Carnesecchi
- Institute of Risk Assessment, Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands; Evidence Management Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126 Parma, Italy.
| | - Nynke I Kramer
- Toxicology Division, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands; Institute of Risk Assessment, Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands.
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, Durham, USA.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) UCLM-CSIC-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| | - Jean-Lou C M Dorne
- Methodology and Scientific Support Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126 Parma, Italy.
| |
Collapse
|
4
|
Toropov AA, Toropova AP, Lombardo A, Roncaglioni A, Lavado GJ, Benfenati E. The Monte Carlo method to build up models of the hydrolysis half-lives of organic compounds. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:463-471. [PMID: 33896300 DOI: 10.1080/1062936x.2021.1914156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The hydrolysis of organic chemicals such as pesticides, pollutants, or drugs can affect the fate and behaviour of environmental contaminants, so it is of interest to evaluate the stability of substances in water for various purposes. For the registration of organic compounds in Europe, information on hydrolysis must be presented. However, the experimental measurements of all chemicals would require enormous resources, and computational models may become attractive. Applying the CORAL software (http://www.insilico.eu/coral) quantitative structure-property relationships (QSPRs) were built up to model hydrolysis. The 2D-optimal descriptor is calculated with so-called correlation weights for attributes of simplified molecular input-line entry systems (SMILES). The correlation weights are obtained as results of the special Monte Carlo optimization. The nature of (five- and six-member) rings is an important component of this approach. Another important component is the atom pair proportions for nitrogen, oxygen, and sulphur. The statistical quality of the best model is: n = 44, r2 = 0.74 (training set); n = 14, r2 = 0.75 (calibration set); and n = 12, r2 = 0.80 (validation set).
Collapse
Affiliation(s)
- A A Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - A P Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - A Lombardo
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - A Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - G J Lavado
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - E Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
5
|
Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. The index of ideality of correlation improves the predictive potential of models of the antioxidant activity of tripeptides from frog skin (Litoria rubella). Comput Biol Med 2021; 133:104370. [PMID: 33838612 DOI: 10.1016/j.compbiomed.2021.104370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
It is usually held that good-quality models for the biological activity of peptides must take into account their 3D architecture and descriptors of quantum mechanics. However, the present study shows that it is possible to build up models without these complex calculations. The structure of tripeptides represented by sequences of one-symbol abbreviations of the corresponding amino acids serves to build up quantitative structure-activity relationships for the antioxidant activity of tripeptides from frog skin. The statistical quality of the best model for the validation set is n = 27, r2 = 0.93, RMSE = 0.15.
Collapse
Affiliation(s)
- Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy.
| | - Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| | - Alessandra Roncaglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| |
Collapse
|
6
|
Toropov AA, Toropova AP, Selvestrel G, Baderna D, Benfenati E. Prediction of No Observed Adverse Effect Concentration for inhalation toxicity using Monte Carlo approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:1-12. [PMID: 33179981 DOI: 10.1080/1062936x.2020.1841827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Ideal correlation is one variable model based on so-called optimal descriptors calculated with simplified molecular input-line entry systems (SMILES). The optimal descriptor is calculated according to the index of ideality of correlation, a new criterion of predictive potential of quantitative structure-property/activity relationships (QSPRs/QSARs). The aim of the present study was the building and estimation of models for inhalation toxicity as No Observed Adverse Effect Concentration (NOAEC) based on the OECD guidelines 413. Three random distributions into the training set and validation set were examined. In practice, a structured training set that contains active training set, passive training set and calibration set is used as the training set. The statistical characteristics of the best model for negative logarithm of NOAEC (pNOAEC) are for training set n = 108, average r 2 = 0.52 + 0.62 + 0.76/3 = 0.63 and for validation set n = 35, r 2 = 0.73.
Collapse
Affiliation(s)
- A A Toropov
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - A P Toropova
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - G Selvestrel
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - D Baderna
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - E Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| |
Collapse
|
7
|
QSPR models for water solubility of ammonium hexafluorosilicates: analysis of the effects of hydrogen bonds. Struct Chem 2020. [DOI: 10.1007/s11224-020-01652-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Toropov AA, Toropova AP, Benfenati E. QSAR model for pesticides toxicity to Rainbow Trout based on "ideal correlations". AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105589. [PMID: 32841884 DOI: 10.1016/j.aquatox.2020.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Pesticides have an impact on the aquatic environment, with ecological effects. The regulation of this impact is of key importance. One of the components of the planning of agricultural and industrial activities is the development of databases and models in order to identify substances that may cause damage. In this study, a quantitative structure-activity relationship (QSAR) approach was established for the prediction of acute toxicity toward rainbow trout of various pesticides. The so-called index of ideality of correlation is the main component of this approach. The validation of this approach has been carried out with three random splits into the training and validation sets. The range of statistical quality of models obtained here for the validation set is R2 = [0.81-0.86] and RMSE = [0.55-0.65].
Collapse
Affiliation(s)
- Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| | - Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy.
| | - Emilio Benfenati
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| |
Collapse
|
9
|
Javidfar M, Ahmadi S. QSAR modelling of larvicidal phytocompounds against Aedes aegypti using index of ideality of correlation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:717-739. [PMID: 32930630 DOI: 10.1080/1062936x.2020.1806922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Aedes aegypti is the primary vector of several infectious viruses that cause yellow, dengue, chikungunya, and Zika fevers. Recently, plant-derived products have been tested as safe and eco-friendly larvicides against Ae. aegypti. The present study aimed to improve QSAR models for 62 larvicidal phytocompounds against Ae. aegypti via the Monte Carlo method based on the index of the ideality of correlation (IIC) criterion. The representation of structures was done with SMILES. Three splits were prepared randomly and three QSAR models were constructed using IIC target function. The molecular descriptors were selected from SMILES descriptors and the hydrogen-filled molecular graphs. The predictability of three models was evaluated on the validation sets, the r 2 of which was 0.9770, 0.8660, and 0.8565 for models 1 to 3, respectively. The statistical results of three randomized splits indicated that robust, simple, predictive, and reliable models were obtained for different sets. From the modelling results, important descriptors were identified to enhance and reduce the larvicidal activity of compounds. Based on the identified important descriptors, some new structures of larvicidal compounds were proposed. The larvicidal activity of novel molecules designed further was supported by docking studies. Using the simple QSAR model, one can predict pLC50 of new similarity larvicidal phytocompounds.
Collapse
Affiliation(s)
- M Javidfar
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University , Tehran, Iran
| | - S Ahmadi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University , Tehran, Iran
| |
Collapse
|
10
|
Toropov AA, Toropova AP, Benfenati E. 'Ideal correlations' for the predictive toxicity to Tetrahymena pyriformis. Toxicol Mech Methods 2020; 30:605-610. [PMID: 32718259 DOI: 10.1080/15376516.2020.1801928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Predictive models for toxicity to Tetrahymena pyriformis are an important component of natural sciences. The present study aims to build up a predictive model for the endpoint using the so-called index of ideality of correlation (IIC). Besides, the comparison of the predictive potential of these models with the predictive potential of models suggested in the literature is the task of the present study. METHODS The Monte Carlo technique is a tool to build up the predictive model applied in this study. The molecular structure is represented via a simplified molecular input-line entry system (SMILES). The IIC is a statistical characteristic sensitive to both the correlation coefficient and mean absolute error. Applying of the IIC to build up quantitative structure-activity relationships (QSARs) for the toxicity to Tetrahymena pyriformis improves the predictive potential of those models for random splits into the training set and the validation set. The calculation was carried out with CORAL software (http://www.insilico.eu/coral). RESULTS The statistical quality of the suggested models is incredibly good for the external validation set, but the statistical quality of the models for the training set is modest. This is the paradox of ideal correlation, which is obtained with applying the IIC. CONCLUSIONS The Monte Carlo technique is a convenient and reliable way to build up a predictive model for toxicity to Tetrahymena pyriformis. The IIC is a useful statistical criterion for building up predictive models as well as for the assessment of their statistical quality.
Collapse
Affiliation(s)
- Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
11
|
Toropova AP, Toropov AA, Carnesecchi E, Benfenati E, Dorne JL. The using of the Index of Ideality of Correlation (IIC) to improve predictive potential of models of water solubility for pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13339-13347. [PMID: 32020455 DOI: 10.1007/s11356-020-07820-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Models for water solubility of pesticides suggested in this manuscript are important data from point of view of ecologic engineering. The Index of Ideality of Correlation (IIC) of groups of quantitative structure-property relationships (QSPRs) for water solubility of pesticides related to the calibration sets was used to identify good in silico models. This comparison confirmed the high IIC set provides better statistical quality of the model for the validation set. Though there are large databases on solubility, the reliable prediction of the endpoint for new substances which are potential pesticides is an important ecologic task. Unfortunately, predictive models for various endpoints suffer overtraining, and the IIC serves to avoid or at least reduce this. Thus, the approach suggested has both theoretical and economic effects for ecology.
Collapse
Affiliation(s)
- Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | - Andrey A Toropov
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Edoardo Carnesecchi
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD, Utrecht, The Netherlands
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Jean Lou Dorne
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| |
Collapse
|
12
|
Toropov AA, Toropova AP. QSPR/QSAR: State-of-Art, Weirdness, the Future. Molecules 2020; 25:E1292. [PMID: 32178379 PMCID: PMC7143984 DOI: 10.3390/molecules25061292] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Ability of quantitative structure-property/activity relationships (QSPRs/QSARs) to serve for epistemological processes in natural sciences is discussed. Some weirdness of QSPR/QSAR state-of-art is listed. There are some contradictions in the research results in this area. Sometimes, these should be classified as paradoxes or weirdness. These points are often ignored. Here, these are listed and briefly commented. In addition, hypotheses on the future evolution of the QSPR/QSAR theory and practice are suggested. In particular, the possibility of extending of the QSPR/QSAR problematic by searching for the "statistical similarity" of different endpoints is suggested and illustrated by an example for relatively "distanced each from other" endpoints, namely (i) mutagenicity, (ii) anticancer activity, and (iii) blood-brain barrier.
Collapse
Affiliation(s)
| | - Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy;
| |
Collapse
|