1
|
La Monica G, Pizzolanti G, Baiamonte C, Bono A, Alamia F, Mingoia F, Lauria A, Martorana A. Design and Synthesis of Novel Thieno[3,2- c]quinoline Compounds with Antiproliferative Activity on RET-Dependent Medullary Thyroid Cancer Cells. ACS OMEGA 2023; 8:34640-34649. [PMID: 37779971 PMCID: PMC10536062 DOI: 10.1021/acsomega.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 10/03/2023]
Abstract
RET kinase gain-of-function mutations represent the main cause of the high aggressiveness and invasiveness of medullary thyroid cancer (MTC). The selective inhibition of the RET kinase is a suitable strategy for the treatment of this endocrine neoplasia. Herein, we performed an innovative ligand-based virtual screening protocol using the DRUDITonline web service, focusing on the RET kinase as a biological target. In this process, thieno[3,2-c]quinolines 6a-e and 7a-e were proposed as new potential RET inhibitors. The selected compounds were synthetized by appropriate synthetic strategies, and in vitro evaluation of antiproliferative properties conducted on the particularly aggressive MTC cell line TT(C634R) identified compounds 6a-d as promising anticancer agents, with IC50 values in the micromolar range. Further structure-based computational studies revealed a significant capability of the most active compounds to the complex RET tyrosine kinase domain. The interesting antiproliferative results supported by in silico predictions suggest that these compounds may represent a starting point for the development of a new series of small heterocyclic molecules for the treatment of MTC.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Giuseppe Pizzolanti
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Concetta Baiamonte
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Francesco Mingoia
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| |
Collapse
|
2
|
Bono A, La Monica G, Alamia F, Mingoia F, Gentile C, Peri D, Lauria A, Martorana A. In Silico Mixed Ligand/Structure-Based Design of New CDK-1/PARP-1 Dual Inhibitors as Anti-Breast Cancer Agents. Int J Mol Sci 2023; 24:13769. [PMID: 37762072 PMCID: PMC10531453 DOI: 10.3390/ijms241813769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
CDK-1 and PARP-1 play crucial roles in breast cancer progression. Compounds acting as CDK-1 and/or PARP-1 inhibitors can induct cell death in breast cancer with a selective synthetic lethality mechanism. A mixed treatment by means of CDK-1 and PARP-1 inhibitors resulted in radical breast cancer cell growth reduction. Inhibitors with a dual target mechanism of action could arrest cancer progression by simultaneously blocking the DNA repair mechanism and cell cycle, resulting in advantageous monotherapy. To this aim, in the present work, we identified compound 645656 with a significant affinity for both CDK-1 and PARP-1 by a mixed ligand- and structure-based virtual screening protocol. The Biotarget Predictor Tool was used at first in a Multitarget mode to filter the large National Cancer Institute (NCI) database. Then, hierarchical docking studies were performed to further screen the compounds and evaluate the ligands binding mode, whose putative dual-target mechanism of action was investigated through the correlation between the antiproliferative activity data and the target proteins' (CDK-1 and PARP-1) expression pattern. Finally, a Molecular Dynamics Simulation confirmed the high stability of the most effective selected compound 645656 in complex with both PARP-1 and CDK-1.
Collapse
Affiliation(s)
- Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy;
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Daniele Peri
- Dipartimento di Ingegneria dell’Innovazione Industriale e Digitale, Università degli Studi di Palermo, Viale 10 delle Scienze Ed. 6, 90128 Palermo, Italy;
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| |
Collapse
|
3
|
Pathania S, Pentikäinen OT, Singh PK. A holistic view on c-Kit in cancer: Structure, signaling, pathophysiology and its inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1876:188631. [PMID: 34606974 DOI: 10.1016/j.bbcan.2021.188631] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Receptor tyrosine kinases play an important role in many cellular processes, and their dysregulation leads to diseases, most importantly cancer. One such receptor tyrosine kinase is c-Kit, a type-III receptor tyrosine kinase, which is involved in various intracellular signaling pathways. The role of different mutant isoforms of c-Kit has been established in several types of cancers. Accordingly, promising c-Kit inhibition results have been reported for the treatment of different cancers (e.g., gastrointestinal stromal tumors, melanoma, acute myeloid leukemia, and other tumors). Therefore, lots of effort has been put to target c-Kit for the treatment of cancer. Here, we provide a comprehensive compilation to provide an insight into c-Kit inhibitor discovery. This compilation provides key information regarding the structure, signaling pathways related to c-Kit, and, more importantly, pharmacophores, binding modes, and SAR analysis for almost all small-molecule heterocycles reported for their c-Kit inhibitory activity. This work could be used as a guide in understanding the basic requirements for targeting c-Kit, and how the selectivity and efficacy of the molecules have been achieved till today.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road, Moga 142001, Punjab, India
| | - Olli T Pentikäinen
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
4
|
Ma Y, Xia R, Ma X, Judson-Torres RL, Zeng H. Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Front Oncol 2021; 11:702287. [PMID: 34350118 PMCID: PMC8327265 DOI: 10.3389/fonc.2021.702287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mucosal melanoma (MM) is a rare melanoma subtype that originates from melanocytes within sun-protected mucous membranes. Compared with cutaneous melanoma (CM), MM has worse prognosis and lacks effective treatment options. Moreover, the endogenous or exogenous risk factors that influence mucosal melanocyte transformation, as well as the identity of MM precursor lesions, are ambiguous. Consequently, there remains a lack of molecular markers that can be used for early diagnosis, and therefore better management, of MM. In this review, we first summarize the main functions of mucosal melanocytes. Then, using oral mucosal melanoma (OMM) as a model, we discuss the distinct pathologic stages from benign mucosal melanocytes to metastatic MM, mapping the possible evolutionary trajectories that correspond to MM initiation and progression. We highlight key areas of ambiguity during the genetic evolution of MM from its benign lesions, and the resolution of which could aid in the discovery of new biomarkers for MM detection and diagnosis. We outline the key pathways that are altered in MM, including the MAPK pathway, the PI3K/AKT pathway, cell cycle regulation, telomere maintenance, and the RNA maturation process, and discuss targeted therapy strategies for MM currently in use or under investigation.
Collapse
Affiliation(s)
- Yanni Ma
- Department of Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ronghui Xia
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- Department of Oral & Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert L Judson-Torres
- Department of Dermatology, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Hanlin Zeng
- Department of Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| |
Collapse
|
5
|
In Silico Identification of Small Molecules as New Cdc25 Inhibitors through the Correlation between Chemosensitivity and Protein Expression Pattern. Int J Mol Sci 2021; 22:ijms22073714. [PMID: 33918281 PMCID: PMC8038176 DOI: 10.3390/ijms22073714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us to further reduce the number of compounds biologically screened. In vitro antiproliferative and enzymatic inhibition assays on the selected compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 proteins. Among them, J3955, the most active inhibitor, showed concentration-dependent antiproliferative activity against HepG2 cells, with GI50 in the low micromolar range. When J3955 was tested in cell-cycle perturbation experiments, it caused mitotic failure by G2/M-phase cell-cycle arrest. Finally, Western blotting analysis showed an increment of phosphorylated Cdk1 levels in cells exposed to J3955, indicating its specific influence in cellular pathways involving Cdc25 proteins.
Collapse
|