1
|
Sadowski M, Dresler E, Wróblewska A, Jasiński R. A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl ( Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules 2024; 29:4876. [PMID: 39459242 PMCID: PMC11510463 DOI: 10.3390/molecules29204876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The molecular mechanism of the reaction between 2-methoxyfuran and ethyl (Z)-3-phenyl-2-nitroprop-2-enoate was investigated using wb97xd/6-311+G(d,p)(PCM) quantum chemical calculations. It was found that the most probable reaction mechanism is fundamentally different from what was previously postulated. In particular, six possible zwitterionic intermediates were detected on the reaction pathway. Their formation is determined by the nature of local nucleophile/electrophile interactions. Additionally, the channel involving the formation of the exo-nitro Diels-Alder cycloadduct was completely ruled out. Finally, the electronic nature of the five- and six-membered nitronates as potential TACs was evaluated.
Collapse
Affiliation(s)
- Mikołaj Sadowski
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Ewa Dresler
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kedzierzyn-Kozle, Poland;
| | - Aneta Wróblewska
- Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
2
|
Kras J, Woliński P, Nagatsky R, Demchuk OM, Jasiński R. Full Regio- and Stereoselective Protocol for the Synthesis of New Nicotinoids via Cycloaddition Processes with the Participation of Trans-Substituted Nitroethenes: Comprehensive Experimental and MEDT Study. Molecules 2023; 28:molecules28083535. [PMID: 37110768 PMCID: PMC10142438 DOI: 10.3390/molecules28083535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
[3 + 2] Cycloaddition reactions with the participation of Z-C-(3-pyridyl)-N-methylnitrone and series of E-2-R-nitroethenes were both experimentally and theoretically explored in the framework of Molecular Electron Density Theory. It was found that all considered processes are realized under mild conditions and in full regio- and stereocontrol. The ELF analysis additionally showed that the studied reaction proceeds by a two-stage, one-step mechanism.
Collapse
Affiliation(s)
- Jowita Kras
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Przemysław Woliński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Roman Nagatsky
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Oleg M Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| |
Collapse
|
3
|
Kula K, Łapczuk A, Sadowski M, Kras J, Zawadzińska K, Demchuk OM, Gaurav GK, Wróblewska A, Jasiński R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238409. [PMID: 36500503 PMCID: PMC9739753 DOI: 10.3390/molecules27238409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Experimental and theoretical studies on the reaction between (E)-3,3,3-trichloro-1-nitroprop-1-ene and N-(4-bromophenyl)-C-arylnitrylimine were performed. It was found that the title process unexpectedly led to 1-(4-bromophenyl)-3-phenyl-5-nitropyrazole instead of the expected Δ2-pyrazoline molecular system. This was the result of a unique CHCl3 elimination process. The observed mechanism of transformation was explained in the framework of the molecular electron density theory (MEDT). The theoretical results showed that both of the possible channels of [3 + 2] cycloaddition were favorable from a kinetic point of view, due to which the creation of 1-(4-bromophenyl)-3-aryl-4-tricholomethyl-5-nitro-Δ2-pyrazoline was more probable. On the other hand, according to the experimental data, the presented reactions occurred with full regioselectivity.
Collapse
Affiliation(s)
- Karolina Kula
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| | - Agnieszka Łapczuk
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| | - Mikołaj Sadowski
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Jowita Kras
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Karolina Zawadzińska
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Oleg M. Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616-69 Brno, Czech Republic
| | - Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.K.); (A.Ł.); (R.J.)
| |
Collapse
|
4
|
Zawadzińska K, Gadocha Z, Pabian K, Wróblewska A, Wielgus E, Jasiński R. The First Examples of [3+2] Cycloadditions with the Participation of ( E)-3,3,3-Tribromo-1-Nitroprop-1-Ene. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217584. [PMID: 36363174 PMCID: PMC9657535 DOI: 10.3390/ma15217584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 05/14/2023]
Abstract
The first examples of [3+2] cycloaddition reactions between 3,3,3-tribromo-1-nitroprop-1-ene (TBMN) were explored on the basis of experimental and theoretical approaches. It was found that reactions involving TBMN and diarylnitrones realized with full regio- and stereoselectivity lead to respective 3,4-cis-4,5-trans-4-nitroisoxazolidines. The regioselecticity and the molecular mechanism of title processes was analyzed on the basis of the advanced DFT computational study.
Collapse
Affiliation(s)
- Karolina Zawadzińska
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Zuzanna Gadocha
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Kamila Pabian
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Correspondence:
| |
Collapse
|
5
|
Hoseini chehreghani SF, Aberoomand Azar P, Shekarchi M, Daraei B. Synthesis, evaluation of drug delivery potential, and the quantum chemical investigation on a molecular imprinted polymer for quetiapine antipsychotic; a joint experimental and density functional theory study. Front Chem 2022; 10:1001685. [PMID: 36311434 PMCID: PMC9614046 DOI: 10.3389/fchem.2022.1001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
In this project, the quetiapine drug was used as the template for synthesis of a molecular imprinted polymer (MIP). The polymerization approach for preparation of this composite was precipitation, where methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2-azobisissobutyronitrile (AIBN) were used as the functional monomer, the cross-linker, and the initiator, respectively. Scanning electron microscopy (SEM) showed that the diameter of the nanoparticles is about 70 nm. The adsorption rates of quetiapine to the MIP host were evaluated at different pHs, and the results showed that the highest adsorption values were obtained at pH = 7. Moreover, the kinetics of the adsorption process was detected to follow the Langmuir isotherm (R2 = 0.9926) and the pseudo-second-order kinetics (R2 = 0.9937). The results confirmed the high capability of the synthesized MIPs as pharmaceutical carriers for quetiapine. Furthermore, the kinetics of the drug release from the MIP follows the Higuchi model at the pHs of 5.8-6.8 and the Korsmeyer-Peppas model at the pHs of 1.2-5. Finally, in light of the density functional theory (DFT)-based quantum chemical descriptors, the polymer-quetiapine drug complex was designed and investigated. The results showed that there is a strong interaction between the host (polymer) and the guest (drug) due to several hydrogen bonds and other intermolecular (polar) interactions.
Collapse
Affiliation(s)
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Shekarchi
- Food and Drug Laboratory Research Center, Food and Drug Organization, MOH and ME, Tehran, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Behnia N, Azar PA, Shekarchi M, Tehrani MS, Adib N. Synthesis of a New Molecular Imprinted Polymer for Oxycodone Opioid and Its Formulation for Transdermal Controlled Drug Delivery Application: A Joint Experimental and Quantum Chemical Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202202553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nasrin Behnia
- Department of Chemistry Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Maryam Shekarchi
- Food and Drug Laboratory Research Centre Food and Drug Organization, MOH&ME Tehran, Postal code 1113615911 Iran
| | | | - Noushin Adib
- Food and Drug Laboratory Research Centre Food and Drug Organization, MOH&ME Tehran, Postal code 1113615911 Iran
| |
Collapse
|
7
|
Kącka-Zych A, Jasiński R. Mechanistic aspects of the synthesis of seven-membered internal nitronates via stepwise [4 + 3] cycloaddition involving conjugated nitroalkenes: Molecular Electron Density Theory computational study. J Comput Chem 2022; 43:1221-1228. [PMID: 35535613 DOI: 10.1002/jcc.26885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022]
Abstract
The density functional theory computational study indicates the possibility of the synthesis of seven-membered internal nitronates via cycloaddition reactions involving Z-C-aryl-N-methylnitrones and E-2-aryl-1-cyano-1-nitroethenes. The detailed exploration of the reaction paths indicates a polar, stepwise reaction mechanism through the zwitterionic intermediate. Using bonding evolution theory (BET), we have deciphered the molecular mechanism of the [4 + 3] cycloaddition reaction between E-2-phenyl-1-cyano-1-nitroethene and Z-C-phenyl-N-methylnitrone. The BET study has revealed that the formation of two CO single bonds takes place in the same way, through the depopulation of NC and CC bonding regions and monosynaptic basins, respectively. The first O1C7 single bond was formed in the sixth phase, while the second C3O4 bond was formed in the last ninth phase.
Collapse
Affiliation(s)
- Agnieszka Kącka-Zych
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Radomir Jasiński
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
8
|
Rehman U, Mansha A, Zahid M, Asim S, Zahoor AF, Rehan ZA. Quantum mechanical modeling unveils the effect of substitutions on the activation barriers of the Diels–Alder reactions of an antiviral compound 7H-benzo[a]phenalene. Struct Chem 2022. [DOI: 10.1007/s11224-022-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101911] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Even at the end of the twentieth century, the view of the one-step [4+2] cycloaddition (Diels-Alder) reaction mechanism was widely accepted as the only possible one, regardless of the nature of the reaction components. Much has changed in the way these reactions are perceived since then. In particular, multi-step mechanisms with zwitterionic or diradical intermediates have been proposed for a number of processes. This review provided a critical analysis of such cases.
Collapse
|
10
|
Kącka-Zych A, Jasiński R. Understanding the molecular mechanism of γ-elimination of nitrous acid in the framework of the molecular electron density theory. J Comput Chem 2021; 42:1195-1203. [PMID: 33844329 DOI: 10.1002/jcc.26532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 11/07/2022]
Abstract
The reactions of γ-dehydronitration of furaxanenitrolic acids have been studied within the density functional theory using molecular electron density theory scheme at the MPWB1K(PCM)/6-311G(d,p) level of theory. The alteration of bonding along the course of the reaction is studied in the topology of the electron density functional within the bonding evolution theory perspective. The characteristics of electron density changes indicate that we can distinguish six different phases in the nitrous acid extrusion from furaxanenitrolic acid 1a. These different phases related to the intrinsic reaction coordinate path of the analyzed reaction denote the non-concerted nature of the molecular mechanism.
Collapse
Affiliation(s)
- Agnieszka Kącka-Zych
- Cracow University of Technology, Institute of Organic Chemistry and Technology, Cracow, Poland
| | - Radomir Jasiński
- Cracow University of Technology, Institute of Organic Chemistry and Technology, Cracow, Poland
| |
Collapse
|
11
|
Khramtsova EE, Lystsova EA, Dmitriev MV, Maslivets AN, Jasiński R. Reaction of Aroylpyrrolobenzothiazinetriones with Electron‐Rich Dienophiles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ekaterina E. Khramtsova
- Department of Chemistry Perm State University ul. Bukireva 15 Perm 614068 Russian Federation
| | - Ekaterina A. Lystsova
- Department of Chemistry Perm State University ul. Bukireva 15 Perm 614068 Russian Federation
| | - Maksim V. Dmitriev
- Department of Chemistry Perm State University ul. Bukireva 15 Perm 614068 Russian Federation
| | - Andrey N. Maslivets
- Department of Chemistry Perm State University ul. Bukireva 15 Perm 614068 Russian Federation
| | - Radomir Jasiński
- Institute of Organic Chemistry & Technology Cracow University of Technology Kraków Warszawska 24 31-155 Krakow Poland
| |
Collapse
|
12
|
Kącka-Zych A, Jasiński R. Understanding the molecular mechanism of the stereoselective conversion of N-trialkylsilyloxy nitronates into bicyclic isoxazoline derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj01198g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of N-trialkylsilyloxy nitronates into bicyclic isoxazoline derivatives has been explored using the density functional theory method within the context of molecular electron density theory at the ωB97XD(PCM)/6-311G(d,p) level.
Collapse
Affiliation(s)
- Agnieszka Kącka-Zych
- Cracow University of Technology
- Institute of Organic Chemistry and Technology
- Warszawska 24
- 31-155 Cracow
- Poland
| | - Radomir Jasiński
- Cracow University of Technology
- Institute of Organic Chemistry and Technology
- Warszawska 24
- 31-155 Cracow
- Poland
| |
Collapse
|
13
|
Participation of Phosphorylated Analogues of Nitroethene in Diels–Alder Reactions with Anthracene: A Molecular Electron Density Theory Study and Mechanistic Aspect. ORGANICS 2020. [DOI: 10.3390/org1010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The structure and the contribution of the bis(2-chloroethyl) 2-nitro 1a and 2-bromo-2-nitroethenylphosphonates 1b with anthracene 2 in the Diels–Alder (DA) reactions have been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP functional together with 6-31G(d), 6-31+G(d) and 6-31+G(d,p) basic sets. Analysis of the Conceptual Density Functional Theory (CDFT) reactivity indices indicates that 1a and 1b can be classified as a strong electrophile and marginal nucleophile, while 2 is classified as a strong electrophile and strong nucleophile. The studied DA reactions take place through a one-step mechanism. A Bonding Evolution Theory (BET) of the one path associated with the DA reaction of 1a with 2 indicates that it is associated with non-concerted two-stage one-step mechanism. BET analysis shows that the first C2-C3 single bond is formed in Phase VI, while the second C1-C6 single bond is formed in the Phase VIII. The formation of both single bonds occurs through the merging of two C2 and C3, C1 and C6 pseudoradical centers, respectively.
Collapse
|