1
|
Shuyu L, Hongxun H, Di W, Hui Y, Hongtu Z, Wenbo W, Xin H, Na W, Lina Z, Ting W. In-situ sequential crystallization of fenofibrate and tristearin - Understanding the distribution of API in particles and stability of solid lipid microparticles from the perspective of crystallization. Eur J Pharm Biopharm 2024; 202:114413. [PMID: 39029878 DOI: 10.1016/j.ejpb.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
In-situ API crystallization in carrier matrices has attracted extensive attention in recent years for its advantages over traditional preparation processes. However, due to the lack of systemic research on molecular self-assembly behaviors, the products obtained by in-situ crystallization suffer from the problems of polymorphic transformation and drug expulsion during storage, limiting its industrial application. This paper investigates the in-situ sequential crystallization behavior of tristearin (SSS) and fenofibrate (FEN), utilizing SSS as the carrier and FEN as the API. It was found that the behavior of mixed crystallization significantly differs from single-component crystallization, including direct formation of stable form of SSS and the rapid crystallization of FEN. During the crystallization process, the melting FEN promotes the movement of SSS molecules, while the sliding of SSS lamellae, in turn, provides a mechanical stimulus to enhance the nucleation of FEN. Based on the observed synergistic crystallization behavior, the distribution and stability of the API within FEN solid lipid microparticles (SLMs) during storage were evaluated, while also examining the stability variations in SLMs formulated at different cooling rates and drug loading concentrations. The findings indicate that the initial nucleated FEN results in a decrease in the surrounding molten FEN and the irregularity of the SSS lamellas, thereby preventing the remaining molten FEN from achieving complete crystallization within a brief period. Due to the compatibility between FEN and SSS, some SSS may blend with the molten FEN, potentially resulting in further crystallization during storage and consequently increasing the risk of drug expulsion.
Collapse
Affiliation(s)
- Li Shuyu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Hao Hongxun
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Wu Di
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Yu Hui
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Zhao Hongtu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Wu Wenbo
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Huang Xin
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Wang Na
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Zhou Lina
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Wang Ting
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| |
Collapse
|
2
|
Xu Z, Chen Y, Cao Y, Xue B. Tough Hydrogels with Different Toughening Mechanisms and Applications. Int J Mol Sci 2024; 25:2675. [PMID: 38473922 DOI: 10.3390/ijms25052675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Load-bearing biological tissues, such as cartilage and muscles, exhibit several crucial properties, including high elasticity, strength, and recoverability. These characteristics enable these tissues to endure significant mechanical stresses and swiftly recover after deformation, contributing to their exceptional durability and functionality. In contrast, while hydrogels are highly biocompatible and hold promise as synthetic biomaterials, their inherent network structure often limits their ability to simultaneously possess a diverse range of superior mechanical properties. As a result, the applications of hydrogels are significantly constrained. This article delves into the design mechanisms and mechanical properties of various tough hydrogels and investigates their applications in tissue engineering, flexible electronics, and other fields. The objective is to provide insights into the fabrication and application of hydrogels with combined high strength, stretchability, toughness, and fast recovery as well as their future development directions and challenges.
Collapse
Affiliation(s)
- Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yanru Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| |
Collapse
|
3
|
Cai Y, Xin L, Li H, Sun P, Liu C, Fang L. Mussel-inspired controllable drug release hydrogel for transdermal drug delivery: Hydrogen bond and ion-dipole interactions. J Control Release 2024; 365:161-175. [PMID: 37972766 DOI: 10.1016/j.jconrel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Hydrogels have broad application prospects in drug delivery due to their biocompatibility, high water content and three-dimensional structure. However, the regulation of drug release from hydrogels is an important issue in medical applications. At the same time, water also has an important impact on drug release. In this study, a hydrogel with hydrogen bond and ion dipole interaction (PAHDP) was prepared by introducing catechol group into polymer to regulate drug release. Ten model drugs were selected to explore the relationship and mechanism of action among polymer, drug and water. The results showed that PAHDP had excellent adhesion and safety. Drug release test showed that 10 kinds of drugs had different drug release trends, and the release amount was negatively correlated with drug polarizability and LogP. In addition, in vitro transdermal test and pharmacokinetic results showed that the hydrogel based on PAHDP achieved increased or decreased blood drug concentration, and the area under the concentration-time curve (AUC) of >1.5 times showed its potential to regulate drug release. The mechanism study showed that the hydrogen bond and ion dipole interaction between polymer and drug were affected by drug polarizability and LogP, and the distribution of water in different states was changed. Hydrogen bond and ion dipole interactions synergistically control drug release. Therefore, the mussel inspired PAHDP hydrogel has the potential to become a controllable drug delivery system.
Collapse
Affiliation(s)
- Yu Cai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China
| | - Liying Xin
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hui Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Liang Fang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China; Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nat Commun 2023; 14:4838. [PMID: 37563117 PMCID: PMC10415291 DOI: 10.1038/s41467-023-40459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.
Collapse
Affiliation(s)
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Quinn Lanners
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Cynthia Rudin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - L Catherine Brinson
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Banerjee A, Datta S, Das A, Roy Chowdhury A, Datta P. A Micro-Scale Non-Linear Finite Element Model to Optimize the Mechanical Behavior of Bioprinted Constructs. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:490-502. [PMID: 36660750 PMCID: PMC9831571 DOI: 10.1089/3dp.2021.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extrusion-based bioprinting is an enabling biofabrication technique that is used to create heterogeneous tissue constructs according to patient-specific geometries and compositions. The optimization of bioinks as per requirements for specific tissue applications is an essential exercise in ensuring clinical translation of the bioprinting technologies. Most notably, optimum hydrogel polymer concentrations are required to ensure adequate mechanical properties of bioprinted constructs without causing significant shear stresses on cells. However, experimental iterations are often tedious for optimizing the bioink properties. In this work, a nonlinear finite element modeling approach has been undertaken to determine the effect of different bioink parameters such as composition, concentration on the range of stresses being experienced by the cells in the bioprinted construct. The stress distribution of the cells at different parts of the constructs has also been modeled. It is found that both bioink chemical compositions and concentrations can substantially alter the stress effects experienced by the cells. Concentrated regions of softer cells near pore regions were found to increase stress concentrations by almost three times compared with stress generated in cells away from the pores. The study provides a method for rapid optimization of bioinks, design of bioprinted constructs, as well as toolpath plans for fabricating constructs with homogenous properties.
Collapse
Affiliation(s)
- Abhinaba Banerjee
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Sudipto Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
6
|
Wu Y, Wang F, Shi Y, Lin G, Qiao J, Wang L. Molecular dynamics simulation of hyaluronic acid hydrogels: Effect of water content on mechanical and tribological properties. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107169. [PMID: 36208538 DOI: 10.1016/j.cmpb.2022.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Recently conducted biomedical studies have shown that the drug diffusivity of hyaluronic acid hydrogel plays an important role in the treatment of joint diseases. The drug diffusivity is closely related to the water content of hydrogel. In addition, different water content will not only affect its mechanical and tribological properties, but also change the effect of drug release. METHODS In this work, a Molecular dynamics simulation was used to investigate the effect of water content on spatial distribution, tribological and mechanical properties of a hyaluronic acid hydrogel network. This paper focuses on the analysis and calculation of the radial distribution function of 20, 40, 60, and 80% water content model and the friction force and mechanical parameters under the influence of different load and friction speed. RESULTS The results show that at 20 and 40% water content, the spatial distribution is loose and the intermolecular force is not strong, resulting in a major lack in tribological and mechanical properties; whereas at 60 and 80% water content, the spatial distribution becomes gradually compact and the intermolecular force is gradually increased. The tribological and mechanical properties manifest a marked improvement. CONCLUSIONS The calculations reveal that the hydrogel model has the best wear resistance, pressure resistance, and plastic deformation resistance at 80% water content. In the range of 20-80% water content, the mechanical properties and friction properties of hydrogels become better and better with the increase of water content.
Collapse
Affiliation(s)
- Yuyao Wu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Jinwei Qiao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| |
Collapse
|
7
|
Hou D, Hong F, Dong B, Wang P, Zhang Y, Wang X, Wang M. Molecular Insights into the Reaction Process of Alkali-Activated Metakaolin by Sodium Hydroxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11337-11345. [PMID: 36063092 DOI: 10.1021/acs.langmuir.2c01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
When metakaolin (MK) is alkalized with an alkaline activator, it depolymerizes under the action of the alkali. However, the process of MK alkalinization is still unrevealed. Here, we supplied a molecular insight into the process of MK alkalinization through reaction molecular dynamics (MD) simulation. The structure, dynamics, and process of MK alkalinization are systematically investigated. The results showed that the layered structure of MK was destroyed and the silicates in MK were dissolved by sodium hydroxide solution during the alkalinization reaction of MK. The aluminates in MK are not dissolved, indicating that aluminates are more stable than silicates. Moreover, the equilibrium structures of MK with H2O and MK with NaOH solution show that only when both sodium hydroxide and water are involved in the alkalinization reaction, the silicates in MK undergo depolymerization. Also, the observed final state of MK alkalinization can be recognized as the precursor of alkali-activated materials (AAMs).
Collapse
Affiliation(s)
- Dongshuai Hou
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Fen Hong
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Biqin Dong
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Yue Zhang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Xinpeng Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266000, China
| |
Collapse
|