1
|
Zia MP, Jain M, Muthukumaran J, Singh AK. Exploration of potential hit compounds targeting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) from Acinetobacter baumannii: an in silico investigation. 3 Biotech 2024; 14:72. [PMID: 38362590 PMCID: PMC10864239 DOI: 10.1007/s13205-024-03923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/07/2024] [Indexed: 02/17/2024] Open
Abstract
The emergence of carbapenem-resistant Acinetobacter baumannii, a highly concerning bacterial species designated as a Priority 1: Critical pathogen by the WHO, has become a formidable global threat. In this study, we utilised computational methods to explore the potent molecules capable of inhibiting the IspC enzyme, which plays a crucial role in the methylerythritol 4-phosphate (MEP) biosynthetic pathway. Employing high-throughput virtual screening of small molecules from the Enamine library, we focused on the highly conserved substrate binding site of the DXR target protein, resulting in the identification of 1000 potential compounds. Among these compounds, we selected the top two candidates (Z2615855584 and Z2206320703) based on Lipinski's rule of Five and ADMET filters, along with FR900098, a known IspC inhibitor, and DXP, the substrate of IspC, for molecular dynamics (MD) simulations. The MD simulation trajectories revealed remarkable structural and thermodynamic stability, as well as strong binding affinity, for all the IspC-ligand complexes. Furthermore, binding free energy calculations based on MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) methodology demonstrated significant interactions between the selected ligand molecules and IspC. Taking into consideration all the aforementioned criteria, we suggest Z2206320703 as the potent lead candidate against IspC. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03923-w.
Collapse
Affiliation(s)
- Mahrukh Parveez Zia
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, Uttar Pradesh India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, Uttar Pradesh India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, Uttar Pradesh India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, Uttar Pradesh India
| |
Collapse
|
2
|
Bhati SK, Jain M, Muthukumaran J, Singh AK. Computational identification of candidate inhibitors for Dihydrofolate reductase in Acinetobacter baumannii. Curr Res Struct Biol 2024; 7:100127. [PMID: 38322649 PMCID: PMC10844809 DOI: 10.1016/j.crstbi.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Acinetobacter baumannii is one of the emerging causes of hospital acquired infections and this bacterium, due to multi-drug resistant and Extensive Drug resistant has been able to develop resistance against the antimicrobial agents that are being used to eliminate it. A.baumannii has been the cause of death in immune compromised patients in hospitals. Hence it is the urgent need of time to find potential inhibitors for this bacterium to cease its virulence and affect its survival inside host organisms. The Dihydrofolate reductase enzyme, which is an important biocatalyst in the conversion of Dihydrofolate to Tetrahydrofolate, is an important drug target protein. In the present study high throughput screening is used to identify the inhibitors of this enzyme. The prioritized ligand molecular candidates identified through virtual screening for the substrate binding site of the predicted model are Z1447621107, Z2604448220 and Z1830442365. The Molecular Dynamics Simulation study suggests that potential inhibitor of the Dihydrofolate reductase enzyme would prevent bacteria from completing its life cycle, affecting its survival. Finally the complexes were analysed for binding free energy of the Dihydrofolate reductase enzyme complexes with the ligands.
Collapse
Affiliation(s)
- Saurabh Kumar Bhati
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
3
|
Jha RK, Singh E, Khan RJ, Kumar A, Jain M, Muthukumaran J, Singh AK. Droperidol as a potential inhibitor of acyl-homoserine lactone synthase from A. baumannii: insights from virtual screening, MD simulations and MM/PBSA calculations. Mol Divers 2023; 27:1979-1999. [PMID: 36190592 DOI: 10.1007/s11030-022-10533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/18/2022] [Indexed: 10/10/2022]
Abstract
Acinetobacter baumannii belongs to the ESKAPE family of pathogens and is a multi-drug resistant, gram-negative bacteria which follows the anaerobic form of respiration. A. baumannii is known to be the causative agent of hospital-related infections such as pneumonia, meningitis, endocarditis, septicaemia and a plethora of infections such as urinary tract infections found primarily in immunocompromised patients. These attributes of A. baumannii make it a priority pathogen against which potential therapeutic agents need to be developed. A. baumannii employs the formation of a biofilm to insulate its colonies from the outer environment, which allows it to grow under harsh environmental conditions and develop resistance against various drug molecules. Acyl-homoserine lactone synthase (AHLS) is an enzyme involved in the quorum-sensing pathway in A. baumannii, which is responsible for the synthesis of signal molecules known as acyl-homoserine lactones, which trigger the signalling pathway to regulate the factors involved in biofilm formation and regulation. The present study utilised a homology-modelled structure of AHLS to virtually screen it against the ZINC in trial/FDA-approved drug molecule library to find a subset of potential lead candidates. These molecules were then filtered based on Lipinski's, toxicological and ADME properties, binding affinity, and interaction patterns to delineate lead molecules. Finally, three promising molecules were selected, and their estimated binding affinity values were corroborated using AutoDock 4.2. The identified molecules and a control molecule were subsequently subjected to MD simulations to mimic the physiological conditions of protein ligand-binding interaction under the influence of a GROMOS forcefield. The global and essential dynamics analyses and MM/PBSA based binding free energy computations suggested Droperidol and Cipargamin as potential inhibitors against the binding site of AHLS from A. baumannii. The binding free energy calculations based on the MM/PBSA method showed excellent results for Droperidol (- 50.02 ± 4.67 kcal/mol) and Cipargamin (- 42.29 ± 4.05 kcal/mol).
Collapse
Affiliation(s)
- Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., P.C. 201310, India
| | - Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., P.C. 201310, India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., P.C. 201310, India
| | - Ankit Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., P.C. 201310, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., P.C. 201310, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., P.C. 201310, India.
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., P.C. 201310, India.
| |
Collapse
|
4
|
Jian T, Su Q, Liu Y, Seoh HK, Houghton JE, Tai PC, Huang X. Structure-Based Virtual Screening of Helicobacter pylori SecA Inhibitors. IEEE Trans Nanobioscience 2023; 22:933-942. [PMID: 37030876 DOI: 10.1109/tnb.2023.3259946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
The human bacterial pathogen Helicobacter pylori causes a range of gastric diseases. The killing rate of Helicobacter pylori is declining year by year because of high antibiotics resistance. It is urgent to develop new target and novel anti- Helicobacter pylori drugs. As an "energy pump" for bacterial cells, SecA is essential for bacterial growth and drives bacterial protein transmembrane transport, moreover SecA is absent in mammals, all of which nominate SecA as an attractive antimicrobial target. Here, we provided a structure-based virtual screening method to screen the 3D-diversity natural-product-like screening library against SecA for novel anti- Helicobacter pylori inhibitors with novel scaffolds. In this study, homology modeling was used to construct the three-dimensional structure of Helicobacter pylori SecA. Two rounds of molecular docking were then used to find new small-molecule inhibitors of SecA, identifying six lead candidates that maintained key interactions with the binding pocket. After that, molecular dynamics simulations were used to explore more accurate ligand-receptor binding modes in states close to natural conditions. Encouragingly, all six compounds were relatively stable during the simulation. Apart from that the binding free energy calculation based on MM/PBSA demonstrated favorable results of < -13.642 kcal/mol. Finally, ADME-T analysis indicated that these compounds were also sufficiently druggable. All six compounds can be well combined with the crystal structure, which further facilitate the development of SecA inhibitors and lead compounds against Helicobacter pylori.
Collapse
|
5
|
Liu HT, Weng CY, Zhou L, Xu HB, Liao ZY, Hong HY, Ye YF, Li SF, Wang YJ, Zheng YG. Coevolving stability and activity of LsCR by a single point mutation and constructing neat substrate bioreaction system. Biotechnol Bioeng 2023; 120:1521-1530. [PMID: 36799475 DOI: 10.1002/bit.28357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Carbonyl reductase (CR)-catalyzed bioreduction in the organic phase and the neat substrate reaction system is a lasting challenge, placing higher requirements on the performance of enzymes. Protein engineering is an effective method to enhance the properties of enzymes for industrial applications. In the present work, a single point mutation E145A on our previously constructed CR mutant LsCRM3 , coevolved thermostability, and activity. Compared with LsCRM3 , the catalytic efficiency kcat /KM of LsCRM3 -E145A (LsCRM4 ) was increased from 6.6 to 21.9 s-1 mM-1 . Moreover, E145A prolonged the half-life t1/2 at 40°C from 4.1 to 117 h, T m ${T}_{m}$ was increased by 5°C, T 50 30 ${T}_{50}^{30}$ was increased by 14.6°C, and Topt was increased by 15°C. Only 1 g/L of lyophilized Escherichia coli cells expressing LsCRM4 completely reduced up to 600 g/L 2-chloro-1-(3,4-difluorophenyl)ethanone (CFPO) within 13 h at 45°C, yielding the corresponding (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol ((S)-CFPL) in 99.5% eeP , with a space-time yield of 1.0 kg/L d, the substrate to catalyst ratios (S/C) of 600 g/g. Compared with LsCRM3 , the substrate loading was increased by 50%, with the S/C increased by 14 times. Compared with LsCRWT , the substrate loading was increased by 6.5 times. In contrast, LsCRM4 completely converted 600 g/L CFPO within 12 h in the neat substrate bioreaction system.
Collapse
Affiliation(s)
- Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Chun-Yue Weng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lei Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Hao-Bo Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yu Liao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Han-Yue Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yuan-Fan Ye
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Parveez Zia M, Singh E, Jain M, Muthukumaran J, Singh AK. Structural and functional characterization of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) from Acinetobacter baumannii: identification of promising lead molecules from virtual screening, molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:11598-11611. [PMID: 36752319 DOI: 10.1080/07391102.2023.2174598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023]
Abstract
The advent of multi drug resistance and extensive-drug resistance among various pathogens has caused a rise in nosocomial infections, which in turn has led to rising hospital-acquired infection-related mortality rates. Amongst them, carbapenem-resistant Acinetobacter baumannii is one of the most notorious bacterial species, categorized as a Priority 1: Critical pathogen by the WHO. Therefore, the discovery and development of novel antibiotics, as well as the identification of potential inhibitors, have become the need of the hour. In this study, we have employed computational methods to explore and identify molecules capable of inhibiting enzymes essential in the methylerythritol 4-phosphate (MEP) biosynthetic pathway. The high throughput virtual screening of small molecules (Enamine Advanced Collection (AC) library) against the highly conserved substrate-binding site of the DXS target protein provided us with a total of 1000 molecules. The top four potential candidate molecules, namely-Z3353989070, Z3353989049, Z2295848528, and Z1685501455, alongside fluoropyruvate (control), a known inhibitor of DXS, was chosen for a molecular dynamic simulation study. The molecular dynamic simulation trajectories suggested high structural and thermodynamical stability and strong binding affinity of all the DXS-ligand complexes. Moreover, the MM/PBSA-based binding free energy calculations also exhibited strong interactions of the selected ligand molecules with DXS. In conclusion, we have found that all four molecules displayed better results and stronger binding affinity than the control. In the end, based on all the above-mentioned criteria, we have proposed Z3353989049 to be the promising lead candidate against DXS from A. baumannii.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahrukh Parveez Zia
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Khan RJ, Singh E, Jha RK, Kumar A, Bhati SK, Zia MP, Jain M, Singh RP, Muthukumaran J, Singh AK. Identification and prioritization of potential therapeutic molecules against LpxA from Acinetobacter baumannii - A computational study. Curr Res Struct Biol 2023; 5:100096. [PMID: 36895415 PMCID: PMC9988473 DOI: 10.1016/j.crstbi.2023.100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/05/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
A. baumannii is a ubiquitously found gram-negative, multi-drug resistant bacterial species from the ESKAPE family of pathogens known to be the causative agent for hospital-acquired infections such as pneumonia, meningitis, endocarditis, septicaemia and urinary tract infections. A. baumannii is implicated as a contributor to bloodstream infections in approximately 2% of all worldwide infections. Hence, exploring novel therapeutic agents against the bacterium is essential. LpxA or UDP-N-acetylglucosamine acetyltransferase is an essential enzyme important in Lipid A biosynthesis which catalyses the reversible transfer of an acetyl group on the glucosamine 3-OH of the UDP-GlcNAc which is a crucial step in the biosynthesis of the protective Lipopolysaccharides (LPS) layer of the bacteria which upon disruption can lead to the elimination of the bacterium which delineates LpxA as an appreciable drug target from A. baumannii. The present study performs high throughput virtual screening of LpxA against the enamine-HTSC-large-molecule library and performs toxicity and ADME screening to identify the three promising lead molecules subjected to molecular dynamics simulations. Global and essential dynamics analysis of LpxA and its complexes along with FEL and MM/PBSA based binding free energy delineate Z367461724 and Z219244584 as potential inhibitors against LpxA from A. baumannii.
Collapse
Affiliation(s)
- Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Ankit Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Saurabh Kumar Bhati
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Mahrukh Parveez Zia
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Rashmi Prabha Singh
- Department of Biotechnology, IILM College of Engineering & Technology, Greater Noida, U.P, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| |
Collapse
|