1
|
Ghosh S, Roy R, Mukherjee N, Ghosh S, Jash M, Jana A, Ghosh S. EphA4 Targeting Peptide-Conjugated Extracellular Vesicles Rejuvenates Adult Neural Stem Cells and Exerts Therapeutic Benefits in Aging Rats. ACS Chem Neurosci 2024; 15:3482-3495. [PMID: 39288278 DOI: 10.1021/acschemneuro.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Aging and various neurodegenerative diseases cause significant reduction in adult neurogenesis and simultaneous increase in quiescent neural stem cells (NSCs), which impact the brain's regenerative capabilities. To deal with this challenging issue, current treatments involve stem cell transplants or prevention of neurodegeneration; however, the efficacy or success of this process remains limited. Therefore, extensive and focused investigation is highly demanding to overcome this challenging task. Here, we have designed an efficient peptide-based EphA4 receptor-targeted ligand through an in silico approach. Further, this strategy involves chemical conjugation of the peptide with adipose tissue stem cell-derived EV (Exo-pep-11). Interestingly, our newly designed engineered EV, Exo-pep-11, targets NSC through EphA4 receptors, which offers promising therapeutic advantages by stimulating NSC proliferation and subsequent differentiation. Our result demonstrates that NSC successfully internalized Exo-pep-11 in both in vitro culture conditions as well as in the in vivo aging rats. We found that the uptake of Exo-pep-11 decreased by ∼2.3-fold when NSC was treated with EphA4 antibody before Exo-pep-11 incubation, which confirms the receptor-specific uptake of Exo-pep-11. Exo-pep-11 treatment also increases NSC proliferation by ∼1.9-fold and also shows ∼1.6- and ∼2.4-fold increase in expressions of Nestin and ID1, respectively. Exo-pep-11 also has the potential to increase neurogenesis in aging rats, which is confirmed by ∼1.6- and ∼1.5-fold increases in expressions of TH and Tuj1, respectively, in rat olfactory bulb. Overall, our findings highlight the potential role of Exo-pep-11 for prospective applications in combating age-related declines in NSC activity and neurogenesis.
Collapse
Affiliation(s)
- Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Surojit Ghosh
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Moumita Jash
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| |
Collapse
|
2
|
Ye L, Ajuyo NMC, Wu Z, Yuan N, Xiao Z, Gu W, Zhao J, Pei Y, Min Y, Wang D. Molecular Integrative Study on Inhibitory Effects of Pentapeptides on Polymerization and Cell Toxicity of Amyloid-β Peptide (1-42). Curr Issues Mol Biol 2024; 46:10160-10179. [PMID: 39329958 PMCID: PMC11431437 DOI: 10.3390/cimb46090606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's Disease (AD) is a multifaceted neurodegenerative disease predominantly defined by the extracellular accumulation of amyloid-β (Aβ) peptide. In light of this, in the past decade, several clinical approaches have been used aiming at developing peptides for therapeutic use in AD. The use of cationic arginine-rich peptides (CARPs) in targeting protein aggregations has been on the rise. Also, the process of peptide development employing computational approaches has attracted a lot of attention recently. Using a structure database containing pentapeptides made from 20 L-α amino acids, we employed molecular docking to sort pentapeptides that can bind to Aβ42, then performed molecular dynamics (MD) analyses, including analysis of the binding stability, interaction energy, and binding free energy to screen ligands. Transmission electron microscopy (TEM), circular dichroism (CD), thioflavin T (ThT) fluorescence detection of Aβ42 polymerization, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and the flow cytometry of reactive oxygen species (ROS) were carried out to evaluate the influence of pentapeptides on the aggregation and cell toxicity of Aβ42. Two pentapeptides (TRRRR and ARRGR) were found to have strong effects on inhibiting the aggregation of Aβ42 and reducing the toxicity of Aβ42 secreted by SH-SY5Y cells, including cell death, reactive oxygen species (ROS) production, and apoptosis.
Collapse
Affiliation(s)
- Lianmeng Ye
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Nuela Manka'a Che Ajuyo
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
| | - Zhongyun Wu
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Nan Yuan
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Zhengpan Xiao
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Wenyu Gu
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jiazheng Zhao
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yechun Pei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yi Min
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Dayong Wang
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Yazdi M, Hasanzadeh Kafshgari M, Khademi Moghadam F, Zarezade V, Oellinger R, Khosravi M, Haas S, Hoch CC, Pockley AG, Wagner E, Wollenberg B, Multhoff G, Bashiri Dezfouli A. Crosstalk Between NK Cell Receptors and Tumor Membrane Hsp70-Derived Peptide: A Combined Computational and Experimental Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305998. [PMID: 38298098 PMCID: PMC11005703 DOI: 10.1002/advs.202305998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Natural killer (NK) cells are central components of the innate immunity system against cancers. Since tumor cells have evolved a series of mechanisms to escape from NK cells, developing methods for increasing the NK cell antitumor activity is of utmost importance. It is previously shown that an ex vivo stimulation of patient-derived NK cells with interleukin (IL)-2 and Hsp70-derived peptide TKD (TKDNNLLGRFELSG, aa450-461) results in a significant upregulation of activating receptors including CD94 and CD69 which triggers exhausted NK cells to target and kill malignant solid tumors expressing membrane Hsp70 (mHsp70). Considering that TKD binding to an activating receptor is the initial step in the cytolytic signaling cascade of NK cells, herein this interaction is studied by molecular docking and molecular dynamics simulation computational modeling. The in silico results showed a crucial role of the heterodimeric receptor CD94/NKG2A and CD94/NKG2C in the TKD interaction with NK cells. Antibody blocking and CRISPR/Cas9-mediated knockout studies verified the key function of CD94 in the TKD stimulation and activation of NK cells which is characterized by an increased cytotoxic capacity against mHsp70 positive tumor cells via enhanced production and release of lytic granules and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mina Yazdi
- Pharmaceutical BiotechnologyDepartment of PharmacyLudwig‐Maximilians‐Universität (LMU)81377MunichGermany
| | - Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical ElectronicsCampus Klinikum München rechts der IsarTranslaTUMTechnische Universität München81675MunichGermany
| | | | - Vahid Zarezade
- Behbahan Faculty of Medical SciencesBehbahan6361796819Iran
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional GenomicsSchool of MedicineTechnische Universität München81675MunichGermany
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
| | - Mohammad Khosravi
- Department of PathobiologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvaz6135783151Iran
| | - Stefan Haas
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Cosima C. Hoch
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Alan Graham Pockley
- John van Geest Cancer Research CentreSchool of Science and TechnologyNottingham Trent UniversityNottinghamNG11 8NSUK
| | - Ernst Wagner
- Pharmaceutical BiotechnologyDepartment of PharmacyLudwig‐Maximilians‐Universität (LMU)81377MunichGermany
| | - Barbara Wollenberg
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| |
Collapse
|
4
|
Vincenzi M, Mercurio FA, Leone M. Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools. Int J Mol Sci 2024; 25:1798. [PMID: 38339078 PMCID: PMC10855943 DOI: 10.3390/ijms25031798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Over the last few decades, we have witnessed growing interest from both academic and industrial laboratories in peptides as possible therapeutics. Bioactive peptides have a high potential to treat various diseases with specificity and biological safety. Compared to small molecules, peptides represent better candidates as inhibitors (or general modulators) of key protein-protein interactions. In fact, undruggable proteins containing large and smooth surfaces can be more easily targeted with the conformational plasticity of peptides. The discovery of bioactive peptides, working against disease-relevant protein targets, generally requires the high-throughput screening of large libraries, and in silico approaches are highly exploited for their low-cost incidence and efficiency. The present review reports on the potential challenges linked to the employment of peptides as therapeutics and describes computational approaches, mainly structure-based virtual screening (SBVS), to support the identification of novel peptides for therapeutic implementations. Cutting-edge SBVS strategies are reviewed along with examples of applications focused on diverse classes of bioactive peptides (i.e., anticancer, antimicrobial/antiviral peptides, peptides blocking amyloid fiber formation).
Collapse
Affiliation(s)
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.)
| |
Collapse
|