1
|
Lee CE, Park Y, Park H, Kwak K, Lee H, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural insights into alterations in the substrate spectrum of serine-β-lactamase OXA-10 from Pseudomonas aeruginosa by single amino acid substitutions. Emerg Microbes Infect 2024; 13:2412631. [PMID: 39361442 PMCID: PMC11497580 DOI: 10.1080/22221751.2024.2412631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The extensive use of β-lactam antibiotics has led to significant resistance, primarily due to hydrolysis by β-lactamases. OXA class D β-lactamases can hydrolyze a wide range of β-lactam antibiotics, rendering many treatments ineffective. We investigated the effects of single amino acid substitutions in OXA-10 on its substrate spectrum. Broad-spectrum variants with point mutations were searched and biochemically verified. Three key residues, G157D, A124T, and N73S, were confirmed in the variants, and their crystal structures were determined. Based on an enzyme kinetics study, the hydrolytic activity against broad-spectrum cephalosporins, particularly ceftazidime, was significantly enhanced by the G157D mutation in loop 2. The A124T or N73S mutation close to loop 2 also resulted in higher ceftazidime activity. All structures of variants with point mutations in loop 2 or nearby exhibited increased loop 2 flexibility, which facilitated the binding of ceftazidime. These results highlight the effect of a single amino acid substitution in OXA-10 on broad-spectrum drug resistance. Structure-activity relationship studies will help us understand the drug resistance spectrum of β-lactamases, enhance the effectiveness of existing β-lactam antibiotics, and develop new drugs.
Collapse
Affiliation(s)
- Chae-eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yoonsik Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
2
|
Dong X, Xie C, Yi C, Ye P, Ye H, Guo Q, Huang F, Kong YZ, Yang X. Clinical characteristics and antibiotic treatment of peritoneal dialysis-associated peritonitis caused by Pseudomonas species: a review of 15 years' experience from southern China. Microbiol Spectr 2024; 12:e0009624. [PMID: 38695572 PMCID: PMC11237785 DOI: 10.1128/spectrum.00096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 06/06/2024] Open
Abstract
Pseudomonas can lead to peritoneal dialysis-associated peritonitis, which is characterized by a poor prognosis, such as a substantial failure rate and a high death rate. This study aimed to provide an overview of Pseudomonas peritonitis's clinical features, the regimens of antibiotic, antibiotic resistance, and outcomes in peritoneal dialysis (PD) patients. This study observed patients with Pseudomonas peritonitis in two large PD centers in South China from January 2008 to December 2022. The demographics, symptomatology, antibiotics regimens, resistance to common antibiotics, and clinical outcomes of all included patients were reviewed. A total of 3,459 PD patients were included, among them 57 cases of peritonitis caused by Pseudomonas, including 48 cases (84.2%) of Pseudomonas aeruginosa. The incidence rate of Pseudomonas peritonitis was 0.0041 episode per patient-year. Of them, 28.1% (16 cases) of the patients were accompanied by exit site infection (ESI), and all had abdominal pain and turbid ascites at the time of onset. The most commonly used antibiotic combination was ceftazidime combined with amikacin. Approximately 89% of Pseudomonas species were sensitive to ceftazidime, and 88% were sensitive to amikacin. The overall primary response rate was 28.1% (16 patients), and the complete cure rate was 40.4% (23 patients). There was no significant difference in the complete cure rate of peritonitis using three and other antibiotic treatment regimens (44.8% vs 46.4%; P = 0.9). The successful treatment group had higher baseline albumin level (35.9 ± 6.2; P = 0.008) and residual urine volume (650.7 ± 375.5; P = 0.04). Although the incidence of peritonitis caused by Pseudomonas was low, the symptoms were serious, and prognosis was very poor. Pseudomonas was still highly susceptible to first-line antibiotics currently in use against Gram-negative bacteria. Patients with successful treatment had higher albumin levels and higher urine output. IMPORTANCE Although the incidence of peritoneal dialysis-associated peritonitis caused by Pseudomonas is very low, it seriously affects the technique survival of peritoneal dialysis patients. However, there are few studies and reports on Pseudomonas peritonitis in the Chinese mainland area. Therefore, the purpose of this study is to describe the clinical characteristics, the regimens of antibiotic, drug resistance, and outcome of peritoneal dialysis patients in southern China in the past 15 years and summarize the clinical experience in the treatment of Pseudomonas peritonitis.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangdong, Guangdong, China
- Department of Nephrology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chunyan Yi
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangdong, Guangdong, China
| | - Peiyi Ye
- Department of Nephrology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangdong, Guangdong, China
| | - Qunying Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangdong, Guangdong, China
| | - Fengxian Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangdong, Guangdong, China
| | - Yao-Zhong Kong
- Department of Nephrology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangdong, Guangdong, China
| |
Collapse
|
3
|
Microbiology of peritoneal dialysis-related infection and factors of refractory peritoneal dialysis related peritonitis: A ten-year single-center study in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:752-759. [PMID: 30665844 DOI: 10.1016/j.jmii.2018.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Peritoneal dialysis (PD)-related infection is a serious complication of patients with PD. Refractory peritonitis may lead to failure of PD, shift to hemodialysis (HD) or death. Besides, microbiologic resistance increased worldwide that might impact the treatment choice for such infections. Investigating the causative pathogens and risk factors of PD-related infections in Taiwan was warranted. METHODS This is a retrospective study involving patients with PD from 2007 to 2016 in a southern Taiwan hospital. Patient characteristics, microbiological data, outcomes, and factors associated with refractory peritonitis were analyzed. RESULTS There were 190 episodes of PD-related peritonitis in 110 patients from this cohort. Gram-positive organisms were the leading cause of PD-related peritonitis, but gram-negative organisms, esp. Pseudomonas aeruginosa, were predominant for exit site infection and tunnel infection. The incidence of peritonitis was 0.25 episode per patient-year (1 episode per 47.69 months). The refractory rate was 14.2% (27/190). Methicillin resistance was noted in 2 (13.3%) of 15 Staphylococcus aureus isolates. Of 114 isolates, 72.8% (83) were susceptible to either cefazolin or gentamicin. Staphylococcus spp. and Escherichia coli infections were significantly associated with refractory peritonitis. Baseline hyponatremia (<130 mmol/L) was independently associated with refractory peritonitis. CONCLUSION Gram-positive organisms remained major cause of PD-related peritonitis. About three quarters of causative pathogens were susceptible to the recommended empirical treatment for PD-related peritonitis. Baseline hyponatremia (<130 mmol/L) was independently associated with refractory peritonitis. Staphylococcus spp. and E. coli infections had important roles for refractory peritonitis.
Collapse
|
4
|
Dehbashi S, Tahmasebi H, Arabestani MR. Association between Beta-lactam Antibiotic Resistance and Virulence Factors in AmpC Producing Clinical Strains of P. aeruginosa. Osong Public Health Res Perspect 2018; 9:325-333. [PMID: 30584496 PMCID: PMC6296806 DOI: 10.24171/j.phrp.2018.9.6.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objectives The purpose of this study was to determine the presence of IMP and OXA genes in clinical strains of Pseudomonas aeruginosa (P. aeruginosa) that are carriers of the ampC gene. Methods In this study, 105 clinical isolates of P. aeruginosa were collected. Antibiotic resistance patterns were determined using the disk diffusion method. The strains carrying AmpC enzymes were characterized by a combination disk method. Multiplex-PCR was used to identify resistance and virulence genes, chi-square test was used to determine the relationship between variables. Results Among 105 isolates of P. aeruginosa, the highest antibiotic resistance was to cefotaxime and aztreonam, and the least resistance was to colictin and ceftazidime. There were 49 isolates (46.66%) that showed an AmpC phenotype. In addition, the frequencies of the resistance genes were; OXA48 gene 85.2%, OXA199, 139 3.8%, OXA23 3.8%, OXA2 66.6%, OXA10 3.8%, OXA51 85.2% and OXA58 3.8%. The IMP27 gene was detected in 9 isolates (8.57%) and the IMP3.34 was detected in 11 isolates (10.47%). Other genes detected included; lasR (17.1%), lasB (18%) and lasA (26.6%). There was a significant relationship between virulence factors and the OX and IMP genes (p ≤ 0.05). Conclusion The relationship between antibiotic resistance and virulence factors observed in this study could play an important role in outbreaks associated with P. aeruginosa infections.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Tahmasebi
- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
El-Shouny WA, Ali SS, Sun J, Samy SM, Ali A. Drug resistance profile and molecular characterization of extended spectrum beta-lactamase (ESβL)-producing Pseudomonas aeruginosa isolated from burn wound infections. Essential oils and their potential for utilization. Microb Pathog 2018; 116:301-312. [PMID: 29407236 DOI: 10.1016/j.micpath.2018.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/14/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa producing extended spectrum β-lactamase (ESβL) enzyme had the ability for antimicrobial resistance mechanisms and its multidrug-resistant (MDR) phenotype, has been increasingly reported as a major clinical concern worldwide. The aim of this study was to (i) characterize ESβL-producing MDR P. aeruginosa isolated from burn wound infections phenotypically and molecularly, (ii) evaluate the antibacterial activity of some essential oils (EOs) against selected ESβL-producing drug resistant P. aeruginosa and (iii) characterize a promising EO. METHODS Identification and antibiotic susceptibility tests were performed for all isolates. ESβL production was detected phenotypically by an initial screening test (IST) and a phenotypic confirmatory test (PCT). Additionally, ESβL-producing isolates were also characterized molecularly. The antibacterial activity was detected using a disc diffusion method. Mechanisms of antibacterial action, the fatty acid profile, and functional groups characterization of the promising EO were analyzed using scanning and transmission electron microscopy (SEM & TEM), gas chromatography-mass spectrometry (GC-MS), and Fourier transform infrared (FTIR) spectroscopy, respectively. RESULTS A total of 50 non duplicated P. aeruginosa isolates from the wound samples of burn patients were identified. Of these, MDR and pan-drug resistance (PDR) showed a high prevalence in 38 (76%) isolates obtained from 10 clusters, while 21 (42%) were identified as ESβL-producing MDR or PDR P. aeruginosa isolates. Phenotypic detection of ESβL production showed that 20% were considered positive ESβL-producing P. aeruginosa using the IST, and were increased to 56% by the PCT. The most prevalent ESβL-encoding gene was blaOXA-2 (60.7%), followed by blaIMP-7 (53.6%) and blaOXA-50 (42.8%). Ginger oil is the most efficient antibacterial agent and its antibacterial action mechanism is attributed to the morphological changes in bacterial cells. The oil characterization revealed that 9,12-Octadecadienoic acid methyl ester is the major fatty acid (50.49%) identified. CONCLUSION The high incidence of drug-resistance in ESβL-producing P. aeruginosa isolated from burn wounds is alarming. As proven in vitro, EOs may represent promising natural alternatives against ESβL-producing PDR or MDR P. aeruginosa isolates.
Collapse
Affiliation(s)
- Wagih A El-Shouny
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013 Zhenjiang, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | - Sara M Samy
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Asmaa Ali
- Abbasia Chest Hospital, Ministry of Health, 11765 Cairo, Egypt
| |
Collapse
|
6
|
Global Molecular Epidemiology of IMP-Producing Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61:AAC.02729-16. [PMID: 28167555 DOI: 10.1128/aac.02729-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/28/2017] [Indexed: 12/23/2022] Open
Abstract
International data on the molecular epidemiology of Enterobacteriaceae with IMP carbapenemases are lacking. We performed short-read (Illumina) whole-genome sequencing on a global collection of 38 IMP-producing clinical Enterobacteriaceae (2008 to 2014). IMP-producing Enterobacteriaceae (7 varieties within 11 class 1 integrons) were mainly present in the South Pacific and Asia. Specific blaIMP-containing integrons (In809 with blaIMP-4, In722 with blaIMP-6, and In687 with blaIMP-14) were circulating among different bacteria in countries such as Australia, Japan, and Thailand. In1312 with blaIMP-1 was present in Klebsiella pneumoniae from Japan and Citrobacter freundii from Brazil. Klebsiella pneumoniae (n = 22) was the most common species; clonal complex 14 (CC14) from Philippines and Japan was the most common clone and contained In1310 with blaIMP-26 and In1321 with blaIMP-6 The Enterobacter cloacae complex (n = 9) consisted of Enterobacter hormaechei and E. cloacae cluster III. CC78 (from Taiwan) containing In73 with blaIMP-8 was the most common clone among the E. cloacae complex. This study highlights the importance of surveillance programs using the latest molecular techniques for providing insight into the characteristics and global distribution of Enterobacteriaceae with blaIMP genes.
Collapse
|