1
|
Yan L, He Y, Zhang Y, Liu Y, Xu L, Han C, Zhao Y, Li H. A novel 268 kb deletion combined with a splicing variant in IL7R causes of severe combined immunodeficiency in a Chinese family: a case report. BMC Med Genomics 2023; 16:323. [PMID: 38082310 PMCID: PMC10712040 DOI: 10.1186/s12920-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) is a group of fatal primary immunodeficiencies characterized by the severe impairment of T-cell differentiation. IL7R deficiency is a rare form of SCID that usually presents in the first months of life with severe and opportunistic infections, failure to thrive, and a high risk of mortality unless treated. Although recent improvements in early diagnosis have been achieved through newborn screening, few IL7R-related SCID patients had been reported in the Chinese population. CASE PRESENTATION Here, we retrospectively analyzed a case of SCID in a 5-month-old girl with symptoms, including severe T-cell depletion, recurrent fever, oral ulcers, pneumonia, hepatosplenomegaly, bone marrow hemophagocytosis, and bacterial and viral infections. Whole-exome sequencing (WES), quantitative PCR (qPCR), and chromosome microarray analysis (CMA) were performed to identify the patient's genetic etiology. We identified a 268 kb deletion and a splicing variant, c.221 + 1G > A, in the proband. These two variants of IL7R were inherited from the father and mother. CONCLUSIONS To our knowledge, this is the first report of whole IL7R gene deletion in combination with a pathogenic splicing variant in a patient with SCID. This deletion also expands the pathogenic variation spectrum of SCID caused by IL7R. The incorporation of exome-based copy number variant analysis makes WES a powerful molecular diagnostic technique for the clinical diagnosis of pediatric patients.
Collapse
Affiliation(s)
- Lulu Yan
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Yan He
- Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Yuxin Zhang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Yingwen Liu
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Limin Xu
- Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Chunxiao Han
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Yudan Zhao
- Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, 315000, China.
| |
Collapse
|
2
|
Yao Z, Jiang J, Ju Y, Luo Y. Aging-related genes revealed Neuroinflammatory mechanisms in ischemic stroke by bioinformatics. Heliyon 2023; 9:e21071. [PMID: 37954339 PMCID: PMC10637918 DOI: 10.1016/j.heliyon.2023.e21071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Ischemic stroke (IS) is a leading cause of disability, morbidity, and mortality globally. Aging affects immune function and contributes to poor outcomes of IS in elderly individuals. However, little is known about how aging-related genes (ARGs) are involved in IS. In this study, the relationship between ARGs and IS immune microenvironment biomarkers was explored by bioinformatics. Two IS microarray datasets (GSE22255, GSE16561) from human blood samples were analyzed and 502 ARGs were identified, from which 29 differentially expressed ARGs were selected. Functional analysis revealed that 7 of these ARGs (IL1B, FOS, JUN, CXCL5, PTGS2, TNFAIP3 and TLR4) were involved in five top enriched pathways (IL-17 signaling pathway, TNF signaling pathway, Rheumatoid arthritis, NF-kappa B signaling pathway and Pertussis) related to immune responses and inflammation. Five hub DE-ARGs (IL2RB, FOS, IL7R, ALDH2 and BIRC2) were identified using machine learning algorithms, and their association with immune-related characteristics was confirmed by additional tests. Single-cell sequencing dataset GSE129788 was retrieved to analyze aging molecular-related features, which was in accordance with microarray datasets. Clustering analysis revealed two subtypes of IS, which were distinguished by their differential expression of genes related to the NF-kappa B signaling pathway. These findings highlight the importance of ARGs in regulating immune responses in IS and suggest potential prevention and treatment strategies as well as guidelines for future research.
Collapse
Affiliation(s)
- Zhengyu Yao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin Jiang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yaxin Ju
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Chen PS, Lee J, Pan HP, Lin YJ, Lin YC, Chang YS, Chen YJ, Yen CL, Lin CW, Chen CA, Shieh CC. Postnatal corticosteroid treatment as a risk factor for false positivity in severe combined immunodeficiency newborn screening. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:871-874. [PMID: 36894477 DOI: 10.1016/j.jmii.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/23/2022] [Accepted: 02/12/2023] [Indexed: 03/02/2023]
Abstract
From 2011, 37 children were referred to a hospital due to low levels of T cell receptor excision circles (TRECs) from newborn screening. Among them, three children were immunologically characterized and followed up to show that postnatal corticosteroid usage may be among the causes of false positivity in TRECs screening.
Collapse
Affiliation(s)
- Po-Sung Chen
- Department of Pediatrics, Sin-Lau Christian Hospital, Tainan, Taiwan; Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Ju Lee
- Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan; Department of Pediatrics, Kuo General Hospital, Taiwan
| | - Hui-Ping Pan
- Genetic Center, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Yuh-Jyh Lin
- Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Yung-Chieh Lin
- Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Yu-Shan Chang
- Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Yen-Ju Chen
- Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Chia-Liang Yen
- Institute of Clinical Medicine, College of Medicine, National Cheng-Kung University Tainan, Taiwan
| | - Ching-Wei Lin
- Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Chih-An Chen
- Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan.
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, College of Medicine, National Cheng-Kung University Tainan, Taiwan; Department of Pediatrics, National Cheng-Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
4
|
Alekseeva MG, Dyakov IN, Bushkova KK, Mavletova DA, Yunes RA, Chernyshova IN, Masalitin IA, Koshenko TA, Nezametdinova VZ, Danilenko VN. Study of the binding of ΔFN3.1 fragments of the Bifidobacterium longum GT15 with TNFα and prevalence of domain-containing proteins in groups of bacteria of the human gut microbiota. MICROBIOME RESEARCH REPORTS 2023; 2:10. [PMID: 38047275 PMCID: PMC10688814 DOI: 10.20517/mrr.2023.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 12/05/2023]
Abstract
Aim: This study is mainly devoted to determining the ability of ∆FN3.1 protein fragments of Bifidobacterium (B.) longum subsp. longum GT15, namely two FN3 domains (2D FN3) and a C-terminal domain (CD FN3), to bind to tumor necrosis factor-alpha (TNF-α). Methods: Fragments of the fn3 gene encoding the 2D FN3 and CD FN3 were cloned in Escherichia (E.) coli. In order to assess the binding specificity between 2D FN3 and CD FN3 to TNFα, we employed the previously developed sandwich ELISA system to detect any specific interactions between the purified protein and any of the studied cytokines. The trRosetta software was used to build 3D models of the ∆FN3.1, 2D FN3, and CD FN3 proteins. The detection of polymorphism in the amino acid sequences of the studied proteins and the analysis of human gut-derived bacterial proteins carrying FN3 domains were performed in silico. Results: We experimentally showed that neither 2D FN3 nor CD FN3 alone can bind to TNFα. Prediction of the 3D structures of ΔFN3.1, 2D FN3, and CD FN3 suggested that only ΔFN3.1 can form a pocket allowing binding with TNFα to occur. Polymorphism analysis of amino acid sequences of ΔFN3.1 proteins in B. longum strains uncovered substitutions that can alter the conformation of the spatial structure of the ΔFN3.1 protein. We also analyzed human gut-derived bacterial proteins harboring FN3 domains which allowed us to differentiate between those containing motifs of cytokine receptors (MCRs) in their FN3 domains and those lacking them. Conclusion: Only the complete ∆FN3.1 protein can selectively bind to TNFα. Analysis of 3D models of the 2D FN3, CD FN3, and ΔFN3.1 proteins showed that only the ΔFN3.1 protein is potentially capable of forming a pocket allowing TNFα binding to occur. Only FN3 domains containing MCRs exhibited sequence homology with FN3 domains of human proteins.
Collapse
Affiliation(s)
- Maria G. Alekseeva
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilya N. Dyakov
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Kristina K. Bushkova
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Dilara A. Mavletova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Roman A. Yunes
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina N. Chernyshova
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Ilya A. Masalitin
- Laboratory of Immunoglobulin biosynthesis, Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia
| | - Tatiana A. Koshenko
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Venera Z. Nezametdinova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Valery N. Danilenko
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- Caspian International School of Medicine, Caspian University, Almaty 050000, Kazakhstan
| |
Collapse
|
5
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
6
|
Martinez CA, Marteinsdottir I, Josefsson A, Sydsjö G, Theodorsson E, Rodriguez-Martinez H. Prenatal stress, anxiety and depression alter transcripts, proteins and pathways associated with immune responses at the maternal-fetal interface†. Biol Reprod 2021; 106:449-462. [PMID: 34935902 PMCID: PMC8934694 DOI: 10.1093/biolre/ioab232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
During pregnancy, the immune system is modified to allow developmental developmental tolerance of the semi-allogeneic fetus and placenta to term. Pregnant women suffering from stress, anxiety and depression show dysfunctions of their immune system that may be responsible for fetal and/or newborn disorders, provided that provided that placental gene regulation is compromised. The present study explored the effects of maternal chronic self-perceived stress, anxiety and depression during pregnancy on the expression of immune related-genes and pathways in term placenta. Pregnancies were clinically monitored with the Beck's Anxiety Inventory (BAI) and Edinburgh Postnatal Depression Scale (EPDS). A cutoff threshold for BAI/EPDS of 10 divided patients into two groups: Index group (≥10, n = 11) and a Control group (<10, n = 11), whose placentae were sampled at delivery. The placental samples were subjected to RNA-Sequencing, demonstrating that stress, anxiety and depression during pregnancy induced a major downregulation of placental transcripts related to immune processes such as T-cell regulation, interleukin and cytokine signaling or innate immune responses. Expression differences of main immune related genes such as CD46, CD15, CD8α & β ILR7α and CCR4 among others, were found in the index group (P < 0.05). Moreover, the key immune-like pathway involved in humoral and cellular immunity named "Primary immunodeficiency" was significantly downregulated in the index group compared to controls. Our results show that mechanisms ruling immune system functions are compromised at the maternal-fetal interface following self-perceived depressive symptoms and anxiety during pregnancy. These findings may help unveil mechanisms ruling the impact of maternal psychiatric symptoms and lead to new prevention/intervention strategies in complicated pregnancies.
Collapse
Affiliation(s)
- Cristina A Martinez
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Ina Marteinsdottir
- Department of Medicine and Optometry, Faculty of Health and Life Sciences, Linnaeus University, Hus Vita, Kalmar, Sweden
| | - Ann Josefsson
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Gunilla Sydsjö
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Division of Clinical Chemistry, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences, Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Nezametdinova VZ, Yunes RA, Dukhinova MS, Alekseeva MG, Danilenko VN. The Role of the PFNA Operon of Bifidobacteria in the Recognition of Host's Immune Signals: Prospects for the Use of the FN3 Protein in the Treatment of COVID-19. Int J Mol Sci 2021; 22:ijms22179219. [PMID: 34502130 PMCID: PMC8430577 DOI: 10.3390/ijms22179219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Bifidobacteria are some of the major agents that shaped the immune system of many members of the animal kingdom during their evolution. Over recent years, the question of concrete mechanisms underlying the immunomodulatory properties of bifidobacteria has been addressed in both animal and human studies. A possible candidate for this role has been discovered recently. The PFNA cluster, consisting of five core genes, pkb2, fn3, aaa-atp, duf58, tgm, has been found in all gut-dwelling autochthonous bifidobacterial species of humans. The sensory region of the species-specific serine-threonine protein kinase (PKB2), the transmembrane region of the microbial transglutaminase (TGM), and the type-III fibronectin domain-containing protein (FN3) encoded by the I gene imply that the PFNA cluster might be implicated in the interaction between bacteria and the host immune system. Moreover, the FN3 protein encoded by one of the genes making up the PFNA cluster, contains domains and motifs of cytokine receptors capable of selectively binding TNF-α. The PFNA cluster could play an important role for sensing signals of the immune system. Among the practical implications of this finding is the creation of anti-inflammatory drugs aimed at alleviating cytokine storms, one of the dire consequences resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Venera Z. Nezametdinova
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Roman A. Yunes
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Marina S. Dukhinova
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Maria G. Alekseeva
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
- Correspondence:
| |
Collapse
|
8
|
Rodriguez JA, Bang TJ, Restrepo CS, Green DB, Browne LP, Vargas D. Imaging Features of Primary Immunodeficiency Disorders. Radiol Cardiothorac Imaging 2021; 3:e200418. [PMID: 33969305 PMCID: PMC8098094 DOI: 10.1148/ryct.2021200418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Primary immunodeficiency disorders (PIDs), which are humoral, combined, and innate defects of the immune system, are relatively uncommon and may go undiagnosed in patients experiencing recurrent infections, resulting in increased morbidity and mortality. PIDs are clinically characterized by a broad spectrum of disorders, including repeated infections, autoimmune disorders, lymphoproliferative diseases, congenital anomalies, and increased risk of malignancy. Cardiothoracic imaging plays a crucial role in the diagnosis of PIDs owing to the high rates of repeated respiratory infections leading to bronchiectasis and other forms of chronic lung disease. Although PIDs as a group may seem similar in terms of radiologic features and clinical manifestations, there are specific entities that are pertinent to each PID on an individual level. For example, patients with common variable immunodeficiency may develop a unique granulomatous lymphocytic interstitial lung disease, and Good syndrome is associated with thymoma. Familiarity with the imaging characteristics of these disorders may expedite diagnosis and prognostication, and better direct therapy. Reviewing the thoracic manifestations of all PIDs is beyond the scope of this article; thus, the focus herein is on discussing the thoracic manifestations of the most common PIDs and their imaging features. © RSNA, 2021An earlier incorrect version appeared online. This article was corrected on March 25, 2021.
Collapse
|
9
|
El Hawary R, Meshaal S, Mauracher A, Opitz L, Abd Elaziz D, Lotfy S, Eldash A, Boutros J, Galal N, Pachlopnik Schmid J, Elmarsafy A. Whole-exome sequencing of T - B + severe combined immunodeficiency in Egyptian infants, JAK3 predominance and novel variants. Clin Exp Immunol 2021; 203:448-457. [PMID: 33040328 PMCID: PMC7874839 DOI: 10.1111/cei.13536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is fatal if not treated with immune reconstitution. In Egypt, T- B+ SCID accounts for 38·5% of SCID diagnoses. An accurate genetic diagnosis is essential for choosing appropriate treatment modalities and for offering genetic counseling to the patient's family. The objectives of this study were to describe the clinical, immunological and molecular characteristics of a cohort of twenty Egyptian patients with T- B+ SCID. The initial diagnosis (based on clinical features and flow cytometry) was followed by molecular investigation (whole-exome sequencing). All patients had the classic clinical picture for SCID, including failure to thrive (n = 20), oral candidiasis (n = 17), persistent diarrhea (n = 14), pneumonia (n = 13), napkin dermatitis (n = 10), skin rash (n = 7), otitis media (n = 3) and meningitis (n = 2). The onset of manifestations was at the age of 2·4 ± 1·6 months and diagnosis at the age of 6·7 ± ·5 months, giving a diagnostic delay of 4·3 months. JAK3 gene variants were most frequent (n = 12) with three novel variants identified, followed by IL2Rγ variants (n = 6) with two novel variants. IL7Rα and CD3ε variants were found once, with a novel variant each. T- B+ NK- SCID accounted for approximately 90% of the Egyptian patients with T- B+ SCID. Of these T- B+ NK- SCID cases, 60% were autosomal recessive syndromes caused by JAK3 mutations and 30% were X-linked syndromes. It might be useful to sequence the JAK3 gene (i.e. targeted Sanger sequencing) in all T- B+ SCID patients, especially after X-linked SCID has been ruled out. Hence, no more than 10% of T- B+ SCID patients might require next-generation for a molecular diagnosis.
Collapse
Affiliation(s)
- R. El Hawary
- Faculty of MedicineClinical Pathology DepartmentCairo UniversityCairoEgypt
| | - S. Meshaal
- Faculty of MedicineClinical Pathology DepartmentCairo UniversityCairoEgypt
| | - A.A. Mauracher
- Division of ImmunologyUniversity Children’s Hospital ZurichZurichSwitzerland
| | - L. Opitz
- ETH ZurichFunctional Genomics Center ZürichUniversity of ZurichZurichSwitzerland
| | - D. Abd Elaziz
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| | - S. Lotfy
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| | - A. Eldash
- Faculty of MedicineClinical Pathology DepartmentCairo UniversityCairoEgypt
| | - J. Boutros
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| | - N. Galal
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| | | | - A. Elmarsafy
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| |
Collapse
|
10
|
Campos LW, Pissinato LG, Yunes JA. Deleterious and Oncogenic Mutations in the IL7RA. Cancers (Basel) 2019; 11:cancers11121952. [PMID: 31817502 PMCID: PMC6966522 DOI: 10.3390/cancers11121952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022] Open
Abstract
Interleukin 7 (IL-7) is a critical cytokine that plays a fundamental role in B- and T-cell development and in acute lymphoblastic leukemia (ALL). Its receptor (IL7R) is a transmembrane heterodimer formed by the IL7Rα and the IL2Rγ chain (γc). The IL7R signals through the JAK/STAT pathway. Loss-of-function mutations and some polymorphisms of the IL7Rα were associated to immunodeficiency and inflammatory diseases, respectively. Gain-of-function mutations were described in T-cell ALL and in high risk precursor B-cell ALL. Most confirmed loss-of-function mutations occur in the extracellular part of the IL7Rα while oncogenic mutations are exclusively found in the extracellular juxtamembrane (EJM) or transmembrane regions. Oncogenic mutations promote either IL7Rα/IL7Rα homodimerization and constitutive signaling, or increased affinity to γc or IL-7. This work presents a review on IL7Rα polymorphisms/mutations and attempts to present a classification based on their structural consequences and resulting biological activity.
Collapse
Affiliation(s)
- Lívia Weijenborg Campos
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, SP 13083-210, Brazil
| | - Leonardo Granato Pissinato
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, SP 13083-210, Brazil
| | - José Andrés Yunes
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Medical Genetics Department, Faculty of Medical Sciences, State University of Campinas, Campinas, SP 13083-894, Brazil
- Correspondence: ; Tel.: +55-19-37875070; Fax: +55-19-3289-3571
| |
Collapse
|
11
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, Lepiarczyk E, Jozwik M, Majewski MK. Placenta Transcriptome Profiling in Intrauterine Growth Restriction (IUGR). Int J Mol Sci 2019; 20:E1510. [PMID: 30917529 PMCID: PMC6471577 DOI: 10.3390/ijms20061510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a serious pathological complication associated with compromised fetal development during pregnancy. The aim of the study was to broaden knowledge about the transcriptomic complexity of the human placenta by identifying genes potentially involved in IUGR pathophysiology. RNA-Seq data were used to profile protein-coding genes, detect alternative splicing events (AS), single nucleotide variant (SNV) calling, and RNA editing sites prediction in IUGR-affected placental transcriptome. The applied methodology enabled detection of 37,501 transcriptionally active regions and the selection of 28 differentially-expressed genes (DEGs), among them 10 were upregulated and 18 downregulated in IUGR-affected placentas. Functional enrichment annotation indicated that most of the DEGs were implicated in the processes of inflammation and immune disorders related to IUGR and preeclampsia. Additionally, we revealed that some genes (S100A13, GPR126, CTRP1, and TFPI) involved in the alternation of splicing events were mainly implicated in angiogenic-related processes. Significant SNVs were overlapped with 6533 transcripts and assigned to 2386 coding sequence (CDS), 1528 introns, 345 5' untranslated region (UTR), 1260 3'UTR, 918 non-coding RNA (ncRNA), and 10 intergenic regions. Within CDS regions, 543 missense substitutions with functional effects were recognized. Two known mutations (rs4575, synonymous; rs3817, on the downstream region) were detected within the range of AS and DEG candidates: PA28β and PINLYP, respectively. Novel genes that are dysregulated in IUGR were detected in the current research. Investigating genes underlying the IUGR is crucial for identification of mechanisms regulating placental development during a complicated pregnancy.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Ewa Lepiarczyk
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| |
Collapse
|