1
|
Liu PY, Ko WC, Lee WS, Lu PL, Chen YH, Cheng SH, Lu MC, Lin CY, Wu TS, Yen MY, Wang LS, Liu CP, Shao PL, Lee YL, Shi ZY, Chen YS, Wang FD, Tseng SH, Lin CN, Chen YH, Sheng WH, Lee CM, Tang HJ, Hsueh PR. In vitro activity of cefiderocol, cefepime/enmetazobactam, cefepime/zidebactam, eravacycline, omadacycline, and other comparative agents against carbapenem-non-susceptible Pseudomonas aeruginosa and Acinetobacter baumannii isolates associated from bloodstream infection in Taiwan between 2018-2020. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:888-895. [PMID: 34521591 DOI: 10.1016/j.jmii.2021.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND/PURPOSE This study aimed to investigate the in vitro susceptibilities of carbapenem-non-susceptible Pseudomonas aeruginosa (CNSPA) and Acinetobacter baumannii (CNSAB) isolates to cefiderocol, novel β-lactamase inhibitor (BLI) combinations, new tetracycline analogues, and other comparative antibiotics. METHODS In total, 405 non-duplicate bacteremic CNSPA (n = 150) and CNSAB (n = 255) isolates were collected from 16 hospitals in Taiwan between 2018 and 2020. Minimum inhibitory concentrations (MICs) were determined using the broth microdilution method, and susceptibilities were interpreted according to the relevant guidelines or in accordance with results of previous studies and non-species-related pharmacokinetic/pharmacodynamic data. RESULTS Among the isolates tested, cefiderocol demonstrated potent in vitro activity against CNSPA (MIC50/90, 0.25/1 mg/L; 100% of isolates were inhibited at ≤4 mg/L) and CNSAB (MIC50/90, 0.5/2 mg/L; 94.9% of isolates were inhibited at ≤4 mg/L) isolates. More than 80% of CNSPA isolates were susceptible to cefiderocol, ceftazidime/avibactam, ceftolozane/tazobactam, and amikacin, based on breakpoints established by the Clinical and Laboratory Standards Institute. Activities of new BLI combinations varied significantly. Tetracycline analogues, including tigecycline (MIC50/90, 1/2 mg/L; 92.5% of CNSAB isolates were inhibited at ≤2 mg/L) and eravacycline (MIC50/90, 0.5/1 mg/L; 99.6% of CNSAB isolates were inhibited at ≤2 mg/L) exhibited more potent in vitro activity against CNSAB than omadacycline (MIC50/90, 4/8 mg/L). CONCLUSIONS The spread of CNSPA and CNSAB poses a major challenge to global health. Significant resistance be developed even before a novel agent becomes commercially available. The development of on-site antimicrobial susceptibility tests for these novel agents is of great clinical importance.
Collapse
Affiliation(s)
- Po-Yu Liu
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hsing Cheng
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan; School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Muh-Yong Yen
- Division of Infectious Diseases, Taipei City Hospital, National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Lih-Shinn Wang
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Tzu Chi University, Hualien, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Medical College, New Taipei City, Taiwan
| | - Pei-Lan Shao
- Department of Pediatrics, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Zhi-Yuan Shi
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hui Tseng
- Center for Disease Control and Prevention, Ministry of Health and Welfare, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Hui Chen
- Infection Control Center, Chi Mei Hospital, Liouying, Taiwan
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ming Lee
- Department of Internal Medicine, St Joseph's Hospital, Yunlin County, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Chiang TT, Huang TW, Sun JR, Kuo SC, Cheng A, Liu CP, Liu YM, Yang YS, Chen TL, Lee YT, Wang YC. Biofilm formation is not an independent risk factor for mortality in patients with Acinetobacter baumannii bacteremia. Front Cell Infect Microbiol 2022; 12:964539. [PMID: 36189355 PMCID: PMC9523115 DOI: 10.3389/fcimb.2022.964539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
In the past decades, due to the high prevalence of the antibiotic-resistant isolates of Acinetobacter baumannii, it has emerged as one of the most troublesome pathogens threatening the global healthcare system. Furthermore, this pathogen has the ability to form biofilms, which is another effective mechanism by which it survives in the presence of antibiotics. However, the clinical impact of biofilm-forming A. baumannii isolates on patients with bacteremia is largely unknown. This retrospective study was conducted at five medical centers in Taiwan over a 9-year period. A total of 252 and 459 patients with bacteremia caused by biofilm- and non-biofilm-forming isolates of A. baumannii, respectively, were enrolled. The clinical demographics, antimicrobial susceptibility, biofilm-forming ability, and patient clinical outcomes were analyzed. The biofilm-forming ability of the isolates was assessed using a microtiter plate assay. Multivariate analysis revealed the higher APACHE II score, shock status, lack of appropriate antimicrobial therapy, and carbapenem resistance of the infected strain were independent risk factors of 28-day mortality in the patients with A. baumannii bacteremia. However, there was no significant difference between the 28-day survival and non-survival groups, in terms of the biofilm forming ability. Compared to the patients infected with non-biofilm-forming isolates, those infected with biofilm-forming isolates had a lower in-hospital mortality rate. Patients with either congestive heart failure, underlying hematological malignancy, or chemotherapy recipients were more likely to become infected with the biofilm-forming isolates. Multivariate analysis showed congestive heart failure was an independent risk factor of infection with biofilm-forming isolates, while those with arterial lines tended to be infected with non-biofilm-forming isolates. There were no significant differences in the sources of infection between the biofilm-forming and non-biofilm-forming isolate groups. Carbapenem susceptibility was also similar between these groups. In conclusion, the patients infected with the biofilm-forming isolates of the A. baumannii exhibited different clinical features than those infected with non-biofilm-forming isolates. The biofilm-forming ability of A. baumannii may also influence the antibiotic susceptibility of its isolates. However, it was not an independent risk factor for a 28-day mortality in the patients with bacteremia.
Collapse
Affiliation(s)
- Tsung-Ta Chiang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jun-Ren Sun
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Maoli County, Taiwan
| | - Aristine Cheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yuag-Meng Liu
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Te-Li Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- *Correspondence: Yung-Chih Wang, ; Yi-Tzu Lee,
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Yung-Chih Wang, ; Yi-Tzu Lee,
| |
Collapse
|
3
|
Zheng Y, Wang J, Wang J, Jiang R, Zhao T. Gut microbiota combined with metabolomics reveal the mechanism of curcumol on liver fibrosis in mice. Biomed Pharmacother 2022; 152:113204. [PMID: 35653891 DOI: 10.1016/j.biopha.2022.113204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Liver fibrosis is a reversible pathological process, and its prevention and treatment hold great significance for patients with chronic liver disease. This study combined 16S rRNA analysis of gut microbiota and serum metabolomics to explore the mechanism of curcumol's effect on liver fibrosis in mice. The results clarified the relationship between the gut microbiota and metabolites in the process of liver fibrosis. MATERIALS AND METHODS In this study, we randomly divided mice into a control group, a model group, and a curcumol treatment group to analyze the pathological changes in the liver tissue as well as the activities of the toll-like receptor 4 (TLR4)/nuclear factory kappa B (NF-κB) signaling pathway and inflammatory factors, such as tumor necrosis factor (TNF), interleukin 6 (IL-6), and IL-8. The gut microbiota were analyzed by 16 S rRNA sequencing, and serum metabolites were examined by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. RESULTS Molecular biological testing found that curcumol could significantly improve the pathological changes of the liver tissue and inhibit the occurrence of liver inflammation. Intestinal flora testing found that curcumol could significantly change the abundances of Veillonellaceae, Prerotella_oulorum, and Alistipes_finegoldii. Metabolomics analysis found that curcumol's antihepatic fibrosis effect may be related to its regulation of arachidonic acid metabolism. Correlation analysis suggested that curcumol regulated the abundances of Bacteroidota and Bacteroides and participated in the metabolism of Prostaglandin B2. CONCLUSIONS When liver fibrosis occurs, the intestinal flora and metabolic network are altered. The effect of curcumol on liver fibrosis may be related to its regulation of intestinal flora and the resulting interference with metabolic pathways, thereby reducing liver inflammation.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiaru Wang
- College of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Ruizhu Jiang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China.
| |
Collapse
|
4
|
Attallah NGM, Mokhtar FA, Elekhnawy E, Heneidy SZ, Ahmed E, Magdeldin S, Negm WA, El-Kadem AH. Mechanistic Insights on the In Vitro Antibacterial Activity and In Vivo Hepatoprotective Effects of Salvinia auriculata Aubl against Methotrexate-Induced Liver Injury. Pharmaceuticals (Basel) 2022; 15:ph15050549. [PMID: 35631375 PMCID: PMC9145932 DOI: 10.3390/ph15050549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Methotrexate (MTX) is widely used in the treatment of numerous malignancies; however, its use is associated with marked hepatotoxicity. Herein, we assessed the possible hepatoprotective effects of Salvinia auriculata methanol extract (SAME) against MTX-induced hepatotoxicity and elucidated the possible fundamental mechanisms that mediated such protective effects for the first time. Forty mice were randomly allocated into five groups (eight/group). Control saline, MTX, and MTX groups were pre-treated with SAME 10, 20, and 30 mg/kg. The results revealed that MTX caused a considerable increase in blood transaminase and lactate dehydrogenase levels, oxidative stress, significant activation of the Nod-like receptor-3 (NLPR3)/caspase-1 inflammasome axis, and its downstream inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). MTX also down-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Additionally, it increased the immunostaining of nuclear factor kappa-B (NF-κB) and downstream inflammatory mediators. Furthermore, the hepatic cellular apoptosis was dramatically up-regulated in the MTX group. On the contrary, prior treatment with SAME significantly improved biochemical, histopathological, immunohistochemical alterations caused by MTX in a dose-dependent manner. The antibacterial activity of SAME has also been investigated against Acinetobacter baumannii clinical isolates. LC-ESI-MS/MS contributed to the authentication of the studied plant and identified 24 active constituents that can be accountable for the SAME-exhibited effects. Thus, our findings reveal new evidence of the hepatoprotective and antibacterial properties of SAME that need further future investigation.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALSalam University, Kafr El Zayat 31616, Al Gharbiya, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Selim Z. Heneidy
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt;
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
5
|
Chen HY, Chuang CC, Chou YC, Hsu WJ, Lin IC, Action Study Group, Sun JR. Rapid typing of carbapenem-resistant Acinetobacter baumannii and Acinetobacter nosocomialis by multiplex Pan- and OXA-PCR assays. J Med Microbiol 2021; 70. [PMID: 34236300 DOI: 10.1099/jmm.0.001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Outbreaks of carbapenem-resistant A. baumannii and A. nosocomialis have occurred worldwide in healthcare settings. Rapid and reliable molecular typing of bacterial isolates is vital for the effective surveillance of institutional outbreaks. The Pan-PCR and OXA-PCR assays are two multiplex PCR-based assays for the molecular typing of Acinetobacter species.Gap statement. However, few studies have investigated the discriminatory power of two multiplex PCR assays in in the genotyping of Acinetobacter species.Aim. We aimed to evaluate the efficacies of the Pan-PCR and OXA-PCR assays for molecular typing of A. baumannii and A. nosocomialis.Methodology. A total of 105 carbapenem-resistant A. baumannii isolates (CRABs) and 93 carbapenem-resistant A. nosocomialis isolates (CRANs) obtained from blood cultures were used for molecular typing by the Pan-PCR and OXA-PCR assays and two multilocus sequence typing (MLST) schemes.Results. The isolates were individually divided into 12 and 21 different sequence types via the Pasteur and Oxford MLST schemes, respectively. Additionally, these isolates were distinguished into 18 different types by the Pan-PCR and OXA-PCR assays. The results of the Pan-PCR and OXA-PCR assays distinguished CRABs and CRANs with a sensitivity of 98.13 % and a specificity of 100 %.Conclusion. The Pan-PCR and OXA-PCR assays are promising alternative methods for rapid molecular typing of CRABs and CRANs in a routine laboratory setting.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan, ROC
| | - Chuan-Chung Chuang
- School of Dentistry and Graduate Institute of Dental Science, National defense medical center, Taipei, Taiwan, ROC.,Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wei-Jane Hsu
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan, ROC
| | - I-Chieh Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|