1
|
Wang H, Fan Q, Wang Y, Yi L, Wang Y. Rethinking the control of Streptococcus suis infection: Biofilm formation. Vet Microbiol 2024; 290:110005. [PMID: 38280304 DOI: 10.1016/j.vetmic.2024.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Streptococcus suis is an emerging zoonotic pathogen that is widespread in swine populations. The control of S. suis infection and its associated diseases is a daunting challenge worldwide. Biofilm formation appears to be the main reason for the persistence of S. suis. In this review we gather existing knowledge on S. suis biofilm, describing the role of biofilm formation in S. suis virulence and drug resistance, the regulatory factors of S. suis biofilm formation, and the research progress of inhibiting S. suis biofilm formation, with the aim of providing guidance for future studies related to the field of S. suis biofilms.
Collapse
Affiliation(s)
- Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
2
|
Yu F, Dong C, Zhang Y, Che R, Xie C, Liu Y, Zhang Z, Li L, Chen X, Cai X, Wang G, Li Y. GrpE and ComD contribute to the adherence, biofilm formation, and pathogenicity of Streptococcus suis. Arch Microbiol 2023; 205:159. [PMID: 37005968 DOI: 10.1007/s00203-023-03503-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Streptococcus suis is a major bacterial pathogen of swine and an emerging zoonotic agent that has to date resulted in substantial economic losses to the swine industry worldwide, and can cause persistent infection by forming biofilms. GrpE and histidine protein kinase ComD are important proteins implicated in the pathogenicity of S. suis, although whether they play roles in adhesion and biofilm formation has yet to be sufficiently clarified. In this study, we constructed grpE and comD deletion strains of S. suis by homologous recombination, and examined their cell adhesion and biofilm formation capacities compared with those of the wild-type strain. The pathogenicity of the grpE and comD deletion strains was evaluated using a mouse infection model, which revealed that compared with the wild-type, these deletion strains induced milder symptoms and lower bacteremia, as well as comparatively minor organ (brain, spleen, liver, and lung) lesions, in the infected mice. Moreover, the deletion of grpE and comD significantly reduced the pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) induction capacity of S. suis. Collectively, the findings of this study indicate that the GrpE and ComD proteins of Streptococcus suis play key roles in the adherence to PK-15 cells and the formation of biofilms, thereby contributing to the virulence of this pathogen.
Collapse
Affiliation(s)
- Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ruixiang Che
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163000, China
| | - Chunmei Xie
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiyun Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lu Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Xueying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China.
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Garzon T, Ortega-Tirado D, Lopez-Romero G, Alday E, Robles-Zepeda RE, Garibay-Escobar A, Velazquez C. "Immunoinformatic Identification of T-Cell and B-Cell Epitopes From Giardia lamblia Immunogenic Proteins as Candidates to Develop Peptide-Based Vaccines Against Giardiasis". Front Cell Infect Microbiol 2021; 11:769446. [PMID: 34778111 PMCID: PMC8579046 DOI: 10.3389/fcimb.2021.769446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Giardiasis is one of the most common gastrointestinal infections worldwide, mainly in developing countries. The etiological agent is the Giardia lamblia parasite. Giardiasis mainly affects children and immunocompromised people, causing symptoms such as diarrhea, dehydration, abdominal cramps, nausea, and malnutrition. In order to develop an effective vaccine against giardiasis, it is necessary to understand the host-Giardia interactions, the immunological mechanisms involved in protection against infection, and to characterize the parasite antigens that activate the host immune system. In this study, we identify and characterize potential T-cell and B-cell epitopes of Giardia immunogenic proteins by immunoinformatic approaches, and we discuss the potential role of those epitopes to stimulate the host´s immune system. We selected the main immunogenic and protective proteins of Giardia experimentally investigated. We predicted T-cell and B-cell epitopes using immunoinformatic tools (NetMHCII and BCPREDS). Variable surface proteins (VSPs), structural (giardins), metabolic, and cyst wall proteins were identified as the more relevant immunogens of G. lamblia. We described the protein sequences with the highest affinity to bind MHC class II molecules from mouse (I-Ak and I-Ad) and human (DRB1*03:01 and DRB1*13:01) alleles, as well as we selected promiscuous epitopes, which bind to the most common range of MHC class II molecules in human population. In addition, we identified the presence of conserved epitopes within the main protein families (giardins, VSP, CWP) of Giardia. To our knowledge, this is the first in silico study that analyze immunogenic proteins of G. lamblia by combining bioinformatics strategies to identify potential T-cell and B-cell epitopes, which can be potential candidates in the development of peptide-based vaccines. The bioinformatics analysis demonstrated in this study provides a deeper understanding of the Giardia immunogens that bind to critical molecules of the host immune system, such as MHC class II and antibodies, as well as strategies to rational design of peptide-based vaccine against giardiasis.
Collapse
Affiliation(s)
- Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
4
|
Evaluation of immune effect of Streptococcus suis biofilm-associated protein PDH. Vet Microbiol 2021; 263:109270. [PMID: 34749282 DOI: 10.1016/j.vetmic.2021.109270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022]
Abstract
As a zoonotic pathogen, Streptococcus suis(S. suis) takes pigs as the main host and is mainly colonizes in the upper respiratory tract and tonsil of pigs, causing septicemia, endocarditis and meningitis in pigs. Pyruvate dehydrogenase (PDH) is an enzyme that catalyzes the conversion of pyruvate to acetyl-CoA. As an immunogenic membrane-associated protein in S. suis, it has been found to be closely related to the formation of biofilm. In this study, the recombinant PDH (rPDH) of S. suis ZY05719 (serotype 2) was expressed and purified in E. coli by His affinity chromatography. Western blotting analysis showed that there was a strong specific reaction between PDH protein and PDH antiserum. Mice were immunized with recombinant PDH and inactivated bacteria, and the relative survival rates were 70 % and 60 %, respectively. In addition, mice immunized with PDH caused high levels of antibodies and high expression of immune-related genes in the spleen, which significantly protected the liver, brain and spleen from pathological damage. In addition, PDH antiserum could significantly inhibit the growth of S. suis and the formation of S. suis biofilm in vitro. These results further suggest that PDH is a promising candidate for S. suis biofilm-related subunit vaccine.
Collapse
|
5
|
Immunoproteomic analysis of Clostridium botulinum type B secretome for identification of immunogenic proteins against botulism. Biotechnol Lett 2021; 43:1019-1036. [PMID: 33629143 PMCID: PMC7904509 DOI: 10.1007/s10529-021-03091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022]
Abstract
Objectives To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. Results In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. Conclusions Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03091-4.
Collapse
|
6
|
Antibiotic resistance related to biofilm formation in Streptococcus suis. Appl Microbiol Biotechnol 2020; 104:8649-8660. [PMID: 32897417 DOI: 10.1007/s00253-020-10873-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic agent, which seriously impacts the pig industry and human health in various countries. Biofilm formation is likely contributing to the virulence and drug resistance in S. suis. A better knowledge of biofilm formation as well as to biofilm-dependent drug resistance mechanisms in S. suis can be of great significance for the prevention and treatment of S. suis infections. This literature review updates the latest scientific data related to biofilm formation in S. suis and its impact on drug tolerance and resistance.Key points• Biofilm formation is the important reasons for drug resistance of SS infections.• The review includes the regulatory mechanism of SS biofilm formation.• The review includes the drug resistance mechanisms of SS biofilm.
Collapse
|
7
|
Wang Y, Wang Y, Liu B, Wang S, Li J, Gong S, Sun L, Yi L. pdh modulate virulence through reducing stress tolerance and biofilm formation of Streptococcus suis serotype 2. Virulence 2020; 10:588-599. [PMID: 31232165 PMCID: PMC6592368 DOI: 10.1080/21505594.2019.1631661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is a zoonotic pathogen. It causes meningitis, arthritis, pneumonia and sepsis in pigs, leading to extremely high mortality, which seriously affects public health and the development of the pig industry. Pyruvate dehydrogenase (PDH) is an important sugar metabolism enzyme that is widely present in microorganisms, mammals and higher plants. It catalyzes the irreversible oxidative decarboxylation of pyruvate to acetyl-CoA and reduces NAD+ to NADH. In this study, we found that the virulence of the S. suis ZY05719 sequence type 7 pdh deletion strain (Δpdh) was significantly lower than the wild-type strain (WT) in the mouse infection model. The distribution of viable bacteria in the blood and organs of mice infected with the Δpdh was significantly lower than those infected with WT. Bacterial survival rates were reduced in response to temperature stress, salt stress and oxidative stress. Additionally, compared to WT, the ability to adhere to and invade PK15 cells, biofilm formation and stress resistance of Δpdh were significantly reduced. Moreover, real-time PCR results showed that pdh deletion reduced the expression of multiple adhesion-related genes. However, there was no significant difference in the correlation biological analysis between the complemented strain (CΔpdh) and WT. Moreover, the survival rate of Δpdh in RAW264.7 macrophages was significantly lower than that of the WT strain. This study shows that PDH is involved in the pathogenesis of S. suis 2 and reduction in virulence of Δpdh may be related to the decreased ability to resist stress of the strain.
Collapse
Affiliation(s)
- Yang Wang
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China.,b Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang , Luoyang , China
| | - Yuxin Wang
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Baobao Liu
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Shaohui Wang
- c Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Shanghai , China
| | - Jinpeng Li
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Shenglong Gong
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Liyun Sun
- a College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China.,b Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang , Luoyang , China
| | - Li Yi
- d College of Life Science , Luoyang Normal University , Luoyang , China
| |
Collapse
|
8
|
Dumesnil A, Martelet L, Grenier D, Auger JP, Harel J, Nadeau E, Gottschalk M. Enolase and dipeptidyl peptidase IV protein sub-unit vaccines are not protective against a lethal Streptococcus suis serotype 2 challenge in a mouse model of infection. BMC Vet Res 2019; 15:448. [PMID: 31823789 PMCID: PMC6905021 DOI: 10.1186/s12917-019-2196-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
Background Streptococcus suis is a major swine pathogen causing arthritis, meningitis and sudden death in post-weaning piglets and is also a zoonotic agent. S. suis comprises 35 different serotypes of which the serotype 2 is the most prevalent in both pigs and humans. In the absence of commercial vaccines, bacterins (mostly autogenous), are used in the field, with controversial results. In the past years, the focus has turned towards the development of sub-unit vaccine candidates. However, published results are sometimes contradictory regarding the protective effect of a same candidate. Moreover, the adjuvant used may significantly influence the protective capacity of a given antigen. This study focused on two protective candidates, the dipeptidyl peptidase IV (DPPIV) and the enolase (SsEno). Both proteins are involved in S. suis pathogenesis, and while contradictory protection results have been obtained with SsEno in the past, no data on the protective capacity of DPPIV was available. Results Results showed that among all the field strains tested, 86 and 88% were positive for the expression of the SsEno and DPPIV proteins, respectively, suggesting that they are widely expressed by strains of different serotypes. However, no protection was obtained after two vaccine doses in a CD-1 mouse model of infection, regardless of the use of four different adjuvants. Even though no protection was obtained, significant amounts of antibodies were produced against both antigens, and this regardless of the adjuvant used. Conclusions Taken together, these results demonstrate that S. suis DPPIV and SsEno are probably not good vaccine candidates, at least not in the conditions evaluated in this study. Further studies in the natural host (pig) should still be carried out. Moreover, this work highlights the importance of confirming results obtained by different research groups.
Collapse
Affiliation(s)
- Audrey Dumesnil
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Léa Martelet
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada.,Oral Ecology Research Group (GREB), Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | - Jean-Philippe Auger
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Josée Harel
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Eric Nadeau
- Prevtec Microbia Inc. 3395 Casavant W. Blvd, Saint-Hyacinthe, QC, J2S 0B8, Canada
| | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada. .,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada.
| |
Collapse
|