1
|
Rosenthal MR, Vijayrajratnam S, Firestone TM, Ng CL. Enhanced cell stress response and protein degradation capacity underlie artemisinin resistance in Plasmodium falciparum. mSphere 2024:e0037124. [PMID: 39436072 DOI: 10.1128/msphere.00371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Malaria remains a global health burden, killing over half a million people each year. Decreased therapeutic efficacy to artemisinin, the most efficacious antimalarial, has been detected in sub-Saharan Africa, a worrying fact given that over 90% of deaths occur on this continent. Mutations in Kelch13 are the most well-established molecular marker for artemisinin resistance, but these do not explain all artemisinin-resistant isolates. Understanding the biological underpinnings of drug resistance is key to curbing the emergence and spread of artemisinin resistance. Artemisinin-mediated non-specific alkylation leads to the accumulation of misfolded and damaged proteins and activation of the parasite unfolded protein response (UPR). In addition, the parasite proteasome is vital to artemisinin resistance, as we have previously shown that chemical inhibition of the proteasome or mutations in the β2 proteasome subunit increase parasite susceptibility to dihydroartemisinin (DHA), the active metabolite of artemisinins. Here, we investigate parasites with mutations at the Kelch13 and/or 19S and 20S proteasome subunits with regard to UPR regulation and proteasome activity in the context of artemisinin resistance. Our data show that perturbing parasite proteostasis kills parasites, early parasite UPR signaling dictates DHA survival outcomes, and DHA susceptibility correlates with impairment of proteasome-mediated protein degradation. Importantly, we show that functional proteasomes are required for artemisinin resistance in a Kelch13-independent manner, and compound-selective proteasome inhibition demonstrates why artemisinin-resistant Kelch13 mutants remain susceptible to the related antimalarial peroxide OZ439. These data provide further evidence for targeting the parasite proteasome and UPR to overcome existing artemisinin resistance.IMPORTANCEDecreased therapeutic efficacy represents a major barrier to malaria treatment control strategies. The malaria proteasome and accompanying unfolded protein response are crucial to artemisinin resistance, revealing novel antimalarial therapeutic strategies.
Collapse
Affiliation(s)
- Melissa R Rosenthal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukhithasri Vijayrajratnam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tessa M Firestone
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Caroline L Ng
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biology, University of Omaha, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Jha NG, Dkhar DS, Singh SK, Malode SJ, Shetti NP, Chandra P. Engineered Biosensors for Diagnosing Multidrug Resistance in Microbial and Malignant Cells. BIOSENSORS 2023; 13:235. [PMID: 36832001 PMCID: PMC9954051 DOI: 10.3390/bios13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To curtail pathogens or tumors, antimicrobial or antineoplastic drugs have been developed. These drugs target microbial/cancer growth and survival, thereby improving the host's health. In attempts to evade the detrimental effects of such drugs, these cells have evolved several mechanisms over time. Some variants of the cells have developed resistances against multiple drugs or antimicrobial agents. Such microorganisms or cancer cells are said to exhibit multidrug resistance (MDR). The drug resistance status of a cell can be determined by analyzing several genotypic and phenotypic changes, which are brought about by significant physiological and biochemical alterations. Owing to their resilient nature, treatment and management of MDR cases in clinics is arduous and requires a meticulous approach. Currently, techniques such as plating and culturing, biopsy, gene sequencing, and magnetic resonance imaging are prevalent in clinical practices for determining drug resistance status. However, the major drawbacks of using these methods lie in their time-consuming nature and the problem of translating them into point-of-care or mass-detection tools. To overcome the shortcomings of conventional techniques, biosensors with a low detection limit have been engineered to provide quick and reliable results conveniently. These devices are highly versatile in terms of analyte range and quantities that can be detected to report drug resistance in a given sample. A brief introduction to MDR, along with a detailed insight into recent biosensor design trends and use for identifying multidrug-resistant microorganisms and tumors, is presented in this review.
Collapse
Affiliation(s)
- Niharika G. Jha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S. Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Sumit K. Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Shweta J. Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Nagaraj P. Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Panjab, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Kampoun T, Srichairatanakool S, Prommana P, Shaw PJ, Green JL, Knuepfer E, Holder AA, Uthaipibull C. Apicoplast ribosomal protein S10-V127M enhances artemisinin resistance of a Kelch13 transgenic Plasmodium falciparum. Malar J 2022; 21:302. [PMID: 36303209 PMCID: PMC9615251 DOI: 10.1186/s12936-022-04330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background The resistance of Plasmodium falciparum to artemisinin-based (ART) drugs, the front-line drug family used in artemisinin-based combination therapy (ACT) for treatment of malaria, is of great concern. Mutations in the kelch13 (k13) gene (for example, those resulting in the Cys580Tyr [C580Y] variant) were identified as genetic markers for ART-resistant parasites, which suggests they are associated with resistance mechanisms. However, not all resistant parasites contain a k13 mutation, and clearly greater understanding of resistance mechanisms is required. A genome-wide association study (GWAS) found single nucleotide polymorphisms associated with ART-resistance in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2), and crt (chloroquine resistance transporter), in addition to k13 gene mutations, suggesting that these alleles contribute to the resistance phenotype. The importance of the FD and ARPS10 variants in ART resistance was then studied since both proteins likely function in the apicoplast, which is a location distinct from that of K13. Methods The reported mutations were introduced, together with a mutation to produce the k13-C580Y variant into the ART-sensitive 3D7 parasite line and the effect on ART-susceptibility using the 0−3 h ring survival assay (RSA0−3 h) was investigated. Results and conclusion Introducing both fd-D193Y and arps10-V127M into a k13-C580Y-containing parasite, but not a wild-type k13 parasite, increased survival of the parasite in the RSA0−3 h. The results suggest epistasis of arps10 and k13, with arps10-V127M a modifier of ART susceptibility in different k13 allele backgrounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04330-3.
Collapse
|
4
|
Al-Mekhlafi HM, Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, Ghailan KY, Hamali HA, Mobarki AA, Alharazi TH, Eisa ZM, Lau YL. Polymorphism analysis of pfmdr1 gene in Plasmodium falciparum isolates 11 years post-adoption of artemisinin-based combination therapy in Saudi Arabia. Sci Rep 2022; 12:517. [PMID: 35017593 PMCID: PMC8752599 DOI: 10.1038/s41598-021-04450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
A total of 227 Plasmodium falciparum isolates from Jazan region, southwestern Saudi Arabia were amplified for the P. falciparum multi-drug resistance 1 (pfmdr1) gene to detect point mutations 11 years after the introduction of artemisinin-based combination therapy (ACT) in Saudi Arabia. The pfmdr1 86Y mutation was found in 11.5% (26/227) of the isolates while the N86 wild allele was detected in 88.5%. Moreover, 184F point mutations dominated (86.3%) the instances of pfmdr1 polymorphism while no mutation was observed at codons 1034, 1042 and 1246. Three pfmdr1 haplotypes were identified, NFSND (74.9%), NYSND (13.7%) and YFSND (11.4%). Associations of the prevalence of 86Y mutation and YFSND haplotype with participants' nationality, residency and parasitaemia level were found to be significant (P < 0.05). The findings revealed significant decline in the prevalence of the pfmdr1 86Y mutation in P. falciparum isolates from Jazan region over a decade after the implementation of ACT treatment. Moreover, the high prevalence of the NFSND haplotype might be indicative of the potential emergence of CQ-sensitive but artemether-lumefantrine-resistant P. falciparum strains since the adoption of ACT. Therefore, continuous monitoring of the molecular markers of antimalarial drug resistance in Jazan region is highly recommended.
Collapse
Affiliation(s)
- Hesham M Al-Mekhlafi
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Aymen M Madkhali
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Ahmed A Abdulhaq
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University of Aden, Aden, Yemen
| | | | - Khalid Ammash Zain
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Khalid Y Ghailan
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia
- Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Hassan A Hamali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Talal H Alharazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Zaki M Eisa
- Saudi Centre for Disease Prevention and Control, Ministry of Health, Jazan, Kingdom of Saudi Arabia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Noreen N, Ullah A, Salman SM, Mabkhot Y, Alsayari A, Badshah SL. New insights into the spread of resistance to artemisinin and its analogues. J Glob Antimicrob Resist 2021; 27:142-149. [PMID: 34517141 DOI: 10.1016/j.jgar.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, has been developing resistance to several drugs worldwide for more than five decades. Initially, resistance was against drugs such as chloroquine, pyrimethamine, sulfadoxine, mefloquine and quinine. Research studies are now reporting parasites with resistance to the most effective and novel drug used against malaria infection worldwide, namely artemisinin. For this reason, the first-line treatment strategy of artemisinin-based combination therapy is becoming unsuccessful in areas where drug resistance is highly prevalent. The increase in artemisinin-resistant P. falciparum strains has threatened international efforts to eliminate malarial infections and to reduce the disease burden. Detection of several phenotypes that display artemisinin resistance, specification of basic genetic factors, the discovery of molecular pathways, and evaluation of its clinical outcome are possible by the current series of research on genomics and transcriptomic levels in Asia and Africa. In artemisinin resistance, slow parasite clearance among malaria-infected patients and enhanced in vitro survival of parasites occurs at the early ring stage. This resistance is due to single nucleotide polymorphisms within the Kelch 13 gene of the parasite and is related to significantly upregulated resistance signalling pathways; thus, the pro-oxidant action of artemisinins can be antagonised. New strategies are required to halt the spread of artemisinin-resistant malarial parasites.
Collapse
Affiliation(s)
- Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | | | - Yahia Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan.
| |
Collapse
|
6
|
Rosenthal MR, Ng CL. A Proteasome Mutation Sensitizes P. falciparum Cam3.II K13 C580Y Parasites to DHA and OZ439. ACS Infect Dis 2021; 7:1923-1931. [PMID: 33971094 PMCID: PMC8500539 DOI: 10.1021/acsinfecdis.0c00900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artemisinin-based combination therapies (ACTs), the World Health Organization-recommended first-line therapy for uncomplicated falciparum malaria, has led to significant decreases in malaria-associated morbidity and mortality in the past two decades. Decreased therapeutic efficacy of artemisinins, the cornerstone of ACTs, is threatening the gains made against this disease. As such, novel therapeutics with uncompromised mechanisms of action are needed to combat parasite-mediated antimalarial resistance. We have previously reported the antimalarial activity of Plasmodium falciparum-specific proteasome inhibitors in conjunction with a variety of antimalarials in clinical use or in preclinical investigations and of proteasome mutants generated in response to these inhibitors. Here, we discover that despite harboring K13C580Y, which has conventionally mediated artemisinin resistance in vitro as measured by increased survival in ring-stage survival assays (RSA), the Cam3.II strain parasites of Cambodian origin that have acquired an additional mutation in the proteasome display increased susceptibility to DHA and OZ439. This discovery implicates the proteasome in peroxide susceptibilities and has favorable implications on the use of peroxide and proteasome inhibitor combination therapy for the treatment of artemisinin-resistant malaria.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Caroline L. Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Alvarez-Fernandez A, Bernal MJ, Fradejas I, Martin Ramírez A, Md Yusuf NA, Lanza M, Hisam S, Pérez de Ayala A, Rubio JM. KASP: a genotyping method to rapid identification of resistance in Plasmodium falciparum. Malar J 2021; 20:16. [PMID: 33407529 PMCID: PMC7789257 DOI: 10.1186/s12936-020-03544-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum. METHODS Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method. RESULTS The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed. CONCLUSIONS The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.
Collapse
Affiliation(s)
- Ana Alvarez-Fernandez
- Malaria & Parasitic Emerging Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Bernal
- Malaria & Parasitic Emerging Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Fradejas
- Department of Clinical Microbiology, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Alexandra Martin Ramírez
- Malaria & Parasitic Emerging Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - Noor Azian Md Yusuf
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Selangor, Malaysia
| | - Marta Lanza
- Malaria & Parasitic Emerging Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - Shamilah Hisam
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Selangor, Malaysia
| | - Ana Pérez de Ayala
- Department of Clinical Microbiology, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - José M Rubio
- Malaria & Parasitic Emerging Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|