1
|
Chang SC, Kao CY, Lin LC, Hidrosollo JH, Lu JJ. Lugdunin production and activity in Staphylococcus lugdunensis isolates are associated with its genotypes. Microbiol Spectr 2023; 11:e0129823. [PMID: 37732790 PMCID: PMC10580833 DOI: 10.1128/spectrum.01298-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023] Open
Abstract
Lugdunin produced by Staphylococcus lugdunensis has been shown to have broad inhibitory activity against Gram-positive bacteria; however, lugdunin activity among S. lugdunensis isolates and its association with different agr, SCCmec, and sequence types remain unclear. We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to identify S. lugdunensis and collected 202 S. lugdunensis samples for further assays. Agar spot tests were performed to characterize S. lugdunensis lugdunin production and activity. Multilocus sequence typing, SCCmec, and agr genotyping were performed on S. lugdunensis. In all, 91 Staphylococcus aureus strains with varying vancomycin susceptibilities were used to examine lugdunin activity in S. lugdunensis. In total, 48 S. lugdunensis strains (23.8%) were found to be oxacillin-resistant S. lugdunensis (ORSL), whereas 154 (76.2%) were classified as oxacillin-sensitive S. lugdunensis (OSSL). Moreover, 16 (33.3%) ORSL and 35 (22.7%) OSSL strains showed antibacterial activity against S. aureus. Our data showed that most lugdunin-producing ORSL strains (14/48, 29.2%) were of ST3-SCCmec V-agr II genotypes, whereas most lugdunin-producing OSSL strains (15/154, 9.7%) were of ST3-agr II, followed by ST1-agr I (10/154, 6.5%). Our data also revealed that lugdunin exhibited weak inhibitory activity against the VISA ST239 isolate. In addition, we observed that ST239 VSSA was more resistant to lugdunin than ST5, ST59, and ST45 VSSA. Taken together, our data pioneered the epidemiology of lugdunin production in S. lugdunensis isolates and revealed its association with genotypes. However, further molecular and bioinformatics investigations are needed to elucidate the regulatory mechanisms of lugdunin production and activity. IMPORTANCE Lugdunin is active against both methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci by dissipating their membrane potential. However, the association of lugdunin activity with the genotypes of Staphylococcus lugdunensis has not been addressed. Here, we show the high prevalence of lugdunin-producing strains among ST1 (83.3%), ST2 (66.7%), and ST3 (53.3%) S. lugdunensis. Moreover, we identified the antibacterial activity of lugdunin-producing strains against VISA and hVISA. These results shed light on the potential application of lugdunin for the treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Fu S, Chen Y, Hu K, Qin T, He Y, Zhao L, Ma X, Chen L, Yu W, Yu Y, Xie Y, Wang Y, Yang D, Xu Y, Gao Z. Characteristics of staphylococcal cassette chromosome mec and lugdunin operon genes in the complete genome of Staphylococcus lugdunensis. Chin Med J (Engl) 2023; 136:1367-1369. [PMID: 36805609 PMCID: PMC10309516 DOI: 10.1097/cm9.0000000000002430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 02/23/2023] Open
Affiliation(s)
- Shining Fu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yusheng Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350000, China
| | - Ke Hu
- Second Division of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tian Qin
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Li Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
- Department of Respiratory Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yan Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yu Xie
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yifan Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yu Xu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
- Department of Pulmonary and Critical Care Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Chang SC, Hidrosollo JH, Lin LC, Ou YH, Kao CY, Lu JJ. Characterization of oxacillin-resistant Staphylococcus lugdunensis isolated from sterile body fluids in a medical center in Taiwan: A 12-year longitudinal epidemiological study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:292-298. [PMID: 36130866 DOI: 10.1016/j.jmii.2022.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND In this study, our objective was to characterize Staphylococcus lugdunensis isolated from sterile body fluids (SBFs) in a medical center in Taiwan between 2009 and 2020. METHODS We used MALDI-TOF MS, disk diffusion testing, agar dilution assay, SCCmec typing, and antibiotic resistance gene screening to identify and investigate the characteristics of oxacillin-resistant S. lugdunensis (ORSL). RESULTS A total of 438 S. lugdunensis isolates were collected and 146 (33.3%) isolates were identified as ORSL. SCCmec type V was dominant (65.7%) in our ORSL isolates, followed by SCCmec type II (18.5%), and type IV (8.9%). After 2013, a slight increase in SCCmec types IV and V was revealed. Moreover, all ORSL isolates with type II and untypable SCCmec were highly resistant to oxacillin (MIC >32 μg/mL), compared to ORSL that had SCCmec types IV, V, and VT. All 146 ORSL isolates were resistant to penicillin and susceptible to teicoplanin and vancomycin. High resistance rates of ORSL to clindamycin (43.2%), erythromycin (43.2%), gentamicin (78.1%) and tetracycline (46.6%) was observed. Moreover, only two (1.4%) and six (4.1%) ORSL isolates were resistant to trimethoprim/sulfamethoxazole and ciprofloxacin, respectively. The erythromycin-resistant ORSL isolates mostly exhibited constitutive MLSB resistant phenotype (61/63, 96.8%) and contained either ermC alone (27/63, 42.9%) or a combination of ermC with ermA (28/63, 44.4%). CONCLUSION Our present study showed a stable rate of ORSL from SBFs during 2009-2020. Moreover, teicoplanin, vancomycin, trimethoprim/sulfamethoxazole, and ciprofloxacin were shown to be highly efficient for the treatment of ORSL in vitro.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Hsiang Ou
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
An lnu(A)-Carrying Multi-Resistance Plasmid Derived from Sequence Type 3 Methicillin-Resistant Staphylococcus lugdunensis May Contribute to Antimicrobial Resistance in Staphylococci. Antimicrob Agents Chemother 2022; 66:e0019722. [PMID: 35876576 PMCID: PMC9380557 DOI: 10.1128/aac.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus lugdunensis (MRSL) strains showing resistance to several common antibiotics have been reported recently. Sequence type (ST) 3 MRSL carrying SCCmec types IV, V, or Vt is the major lineage associated with health care-associated infections. We aimed to investigate the distribution and dissemination of antimicrobial resistance determinants in this lineage. Two representative ST3-MRSL strains, CGMH-SL131 (SCCmec V) and CGMH-SL138 (SCCmec IV), were subjected to whole-genome sequencing. Detection of antibiotic resistance genes and screening of susceptibility patterns were performed for 30 ST3-MRSL and 16 ST6-MRSL strains via PCR and standard methods. Except for mecA and blaZ, antimicrobial resistance genes were located within two plasmids: a 28.6 kb lnu(A)-carrying plasmid (pCGMH_SL138) in CGMH-SL138 and a 26 kb plasmid carrying non-lnu(A) resistance genes (pCGMH_SL131) in CGMH-SL131. Both plasmids shared common genetic features with multiple copies of IS257 flanked by genes conferring resistance to aminoglycoside (aacA-aphD and aadD), TET (tetk), and cadmium (cadDX) and tolerance to chlorhexidine (qacA/R); however, only pCGMH_SL138 harbored lnu(A) that conferred resistance to lincomycin and rep13 that encodes a replication initiation protein. Unlike ST6-MRSL, none of the ST3-MRSL isolates contained the ermA gene. Instead, most isolates harbored lnu(A) (20/30, 66.7%), and several other resistance genes found on pCGMH_SL138. These isolates and transformants containing pCGMH_SL138 exhibited susceptibility to ERY and higher MICs for lincomycin and aforementioned antibiotics. A novel lnu(A)-carrying plasmid, pCGMH_SL138, that harbored a multiresistance gene cluster, was identified in ST3-MRSL strains and may contribute to the dissemination of antibiotic resistance in staphylococci.
Collapse
|
5
|
Enhanced Virulence of Candida albicans by Staphylococcus aureus: Evidence in Clinical Bloodstream Infections and Infected Zebrafish Embryos. J Fungi (Basel) 2021; 7:jof7121099. [PMID: 34947081 PMCID: PMC8706905 DOI: 10.3390/jof7121099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Coinfection with Candida and Staphylococcus results in higher mortality in animal studies. However, the pathogenesis and interplay between C. albicans and S. aureus in bloodstream infections (BSIs) is unclear. This study determines the clinical features and outcomes of mixed C. albicans/S. aureus (CA/SA) BSIs and biofilm formation on pathogenesis during coinfection. Demographics and outcomes for mixed BSIs and monomicrobial candidemia were compared. Compared to 115 monomicrobial C. albicans BSIs, 22 patients with mixed CA/SA BSIs exhibited a significantly higher mortality rate and shorter survival time. In vitro and in vivo biofilm analysis showed that C. albicans accounted for the main biofilm architecture, and S. aureus increased its amount. Antibiotic tolerance in S. aureus, which adhered to Candida hyphae observed by scanning electron microscope, was demonstrated by the presence of wild-type C. albicans co-biofilm. Upregulation in exotoxin genes of S. aureus was evidenced by quantitative RT-PCR when a co-biofilm was formed with C. albicans. Mixed CA/SA BSIs result in a higher mortality rate in patients and in vivo surrogate models experiments. This study demonstrates that the virulence enhancement of C. albicans and S. aureus during co-biofilm formation contributes to the high mortality rate.
Collapse
|
6
|
Ho PL, Law YH, Liu MCJ, Lau A, Tong MK, Chow KH, Wu AKL, Tse CWS, Cheng VCC, Que TL. Improved Detection of mecA-Mediated β-Lactam Resistance in Staphylococcus lugdunensis Using a New Oxacillin Salt Agar Screen. Front Microbiol 2021; 12:704552. [PMID: 34421864 PMCID: PMC8378274 DOI: 10.3389/fmicb.2021.704552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
Oxacillin resistance mediated by mecA in Staphylococcus lugdunensis is emerging in some geographic areas. We evaluated cefoxitin disk diffusion (DD) and a new oxacillin agar (supplemented with 2 μg/ml oxacillin and 2% sodium chloride) screen for the detection of mecA-mediated resistance in S. lugdunensis. A total of 300 consecutive, non-duplicated clinical S. lugdunensis isolates from diverse sources in Hong Kong in 2019 were tested. The categorical agreement and errors obtained between cefoxitin DD test, oxacillin agar screen and mecA PCR were analyzed. Isolates with discordant results were further tested by MIC, penicillin binding protein 2a (PBP2a) assays, population analysis and molecular typing. PCR showed that 62 isolates were mecA-positive and 238 isolates were mecA-negative. For cefoxitin DD results interpreted using S. aureus/S. lugdunensis breakpoints, the categorical agreement (CA) for two brands of Muller-Hinton agars, MH-II (Becton Dickinson) and MH-E (bioMérieux) were both 96.0%; MEs were both 0%; and VMEs were 19.4 and 12.9%, respectively. The new oxacillin agar reliably differentiated mecA-positive and mecA-negative isolates (100% CA) without any ME or VME results. The 8 isolates with false susceptibility in the cefoxitin DD testing had cefoxitin and oxacillin MICs in the susceptible range. The isolates showed heterogeneous oxacillin resistance with resistant subpopulations at low frequencies. All had positive PBP2a results and were typed as sequence type 27/SCCmec V. The findings highlight the inability of cefoxitin DD and MIC tests for reliable detection of some mecA-positive S. lugdunensis isolates.
Collapse
Affiliation(s)
- Pak-Leung Ho
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China.,Carol Yu Center for Infection, University of Hong Kong, Hong Kong, China
| | - Ying-Hang Law
- Department of Clinical Pathology, Tuen Mun Hospital, Hospital Authority, Hong Kong, China
| | - Melissa Chun-Jiao Liu
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Andes Lau
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Man-Ki Tong
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Kin-Hung Chow
- Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Alan Ka-Lun Wu
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority, Hong Kong, China
| | - Cindy Wing-Sze Tse
- Department of Clinical Pathology, Kwong Wah Hospital, Hospital Authority, Hong Kong, China
| | | | - Tak-Lun Que
- Department of Clinical Pathology, Tuen Mun Hospital, Hospital Authority, Hong Kong, China
| |
Collapse
|