1
|
Moazzezi M, Rose B, Kisling K, Moore KL, Ray X. Prospects for daily online adaptive radiotherapy via ethos for prostate cancer patients without nodal involvement using unedited CBCT auto-segmentation. J Appl Clin Med Phys 2021; 22:82-93. [PMID: 34432932 PMCID: PMC8504605 DOI: 10.1002/acm2.13399] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Implementing new online adaptive radiation therapy technologies is challenging because extra clinical resources are required particularly expert contour review. Here, we provide the first assessment of Varian's Ethos™ adaptive platform for prostate cancer using no manual edits after auto‐segmentation to minimize this impact on clinical efficiency. Methods Twenty‐five prostate patients previously treated at our clinic were re‐planned using an Ethos™ emulator. Clinical target volumes (CTV) included intact prostate and proximal seminal vesicles. The following clinical margins were used: 3 mm posterior, 5 mm left/right/anterior, and 7 mm superior/inferior. Adapted plans were calculated for 10 fractions per patient using Ethos's auto‐segmentation and auto‐planning workflow without manual contouring edits. Doses and auto‐segmented structures were exported to our clinical treatment planning system where contours were modified as needed for all 250 CTVs and organs‐at‐risk. Dose metrics from adapted plans were compared to unadapted plans to evaluate CTV and OAR dose changes. Results Overall 96% of fractions required auto‐segmentation edits, although corrections were generally minor (<10% of the volume for 70% of CTVs, 88% of bladders, and 90% of rectums). However, for one patient the auto‐segmented CTV failed to include the superior portion of prostate that extended into the bladder at all 10 fractions resulting in under‐contouring of the CTV by 31.3% ± 6.7%. For the 24 patients with minor auto‐segmentation corrections, adaptation improved CTV D98% by 2.9% ± 5.3%. For non‐adapted fractions where bladder or rectum V90% exceeded clinical thresholds, adaptation reduced them by 13.1% ± 1.0% and 6.5% ± 7.3%, respectively. Conclusion For most patients, Ethos's online adaptive radiation therapy workflow improved CTV D98% and reduced normal tissue dose when structures would otherwise exceed clinical thresholds, even without time‐consuming manual edits. However, for one in 25 patients, large contour edits were required and thus scrutiny of the daily auto‐segmentation is necessary and not all patients will be good candidates for adaptation.
Collapse
Affiliation(s)
- Mojtaba Moazzezi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Brent Rose
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Kelly Kisling
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Kevin L Moore
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Xenia Ray
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Da Silva Mendes V, Nierer L, Li M, Corradini S, Reiner M, Kamp F, Niyazi M, Kurz C, Landry G, Belka C. Dosimetric comparison of MR-linac-based IMRT and conventional VMAT treatment plans for prostate cancer. Radiat Oncol 2021; 16:133. [PMID: 34289868 PMCID: PMC8296626 DOI: 10.1186/s13014-021-01858-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background The aim of this study was to evaluate and compare the performance of intensity modulated radiation therapy (IMRT) plans, planned for low-field strength magnetic resonance (MR) guided linear accelerator (linac) delivery (labelled IMRT MRL plans), and clinical conventional volumetric modulated arc therapy (VMAT) plans, for the treatment of prostate cancer (PCa). Both plans used the original planning target volume (PTV) margins. Additionally, the potential dosimetric benefits of MR-guidance were estimated, by creating IMRT MRL plans using smaller PTV margins. Materials and methods 20 PCa patients previously treated with conventional VMAT were considered. For each patient, two different IMRT MRL plans using the low-field MR-linac treatment planning system were created: one with original (orig.) PTV margins and the other with reduced (red.) PTV margins. Dose indices related to target coverage, as well as dose-volume histogram (DVH) parameters for the target and organs at risk (OAR) were compared. Additionally, the estimated treatment delivery times and the number of monitor units (MU) of each plan were evaluated. Results The dose distribution in the high dose region and the target volume DVH parameters (D98%, D50%, D2% and V95%) were similar for all three types of treatment plans, with deviations below 1% in most cases. Both IMRT MRL plans (orig. and red. PTV margins) showed similar homogeneity indices (HI), however worse values for the conformity index (CI) were also found when compared to VMAT. The IMRT MRL plans showed similar OAR sparing when the orig. PTV margins were used but a significantly better sparing was feasible when red. PTV margins were applied. Higher number of MU and longer predicted treatment delivery times were seen for both IMRT MRL plans. Conclusions A comparable plan quality between VMAT and IMRT MRL plans was achieved, when applying the same PTV margin. However, online MR-guided adaptive radiotherapy allows for a reduction of PTV margins. With a red. PTV margin, better sparing of the surrounding tissues can be achieved, while maintaining adequate target coverage. Nonetheless, longer treatment delivery times, characteristic for the IMRT technique, have to be expected.
Collapse
Affiliation(s)
- Vanessa Da Silva Mendes
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Lukas Nierer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,Department of Radiation Oncology, Cologne University Hospital, Cologne, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
3
|
Varnava M, Sumida I, Oda M, Kurosu K, Isohashi F, Seo Y, Otani K, Ogawa K. Dosimetric comparison between volumetric modulated arc therapy planning techniques for prostate cancer in the presence of intrafractional organ deformation. JOURNAL OF RADIATION RESEARCH 2021; 62:309-318. [PMID: 33341880 PMCID: PMC7948894 DOI: 10.1093/jrr/rraa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to compare single-arc (SA) and double-arc (DA) treatment plans, which are planning techniques often used in prostate cancer volumetric modulated arc therapy (VMAT), in the presence of intrafractional deformation (ID) to determine which technique is superior in terms of target dose coverage and sparing of the organs at risk (OARs). SA and DA plans were created for 27 patients with localized prostate cancer. ID was introduced to the clinical target volume (CTV), rectum and bladder to obtain blurred dose distributions using an in-house software. ID was based on the motion probability function of each structure voxel and the intrafractional motion of the respective organs. From the resultant blurred dose distributions of SA and DA plans, various parameters, including the tumor control probability, normal tissue complication probability, homogeneity index, conformity index, modulation complexity score for VMAT, dose-volume indices and monitor units (MUs), were evaluated to compare the two techniques. Statistical analysis showed that most CTV and rectum parameters were significantly larger for SA plans than for DA plans (P < 0.05). Furthermore, SA plans had fewer MUs and were less complex (P < 0.05). The significant differences observed had no clinical significance, indicating that both plans are comparable in terms of target and OAR dosimetry when ID is considered. The use of SA plans is recommended for prostate cancer VMAT because they can be delivered in shorter treatment times than DA plans, and therefore benefit the patients.
Collapse
Affiliation(s)
- Maria Varnava
- Corresponding author. Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan. Tel: +81-6-6879-3482; Fax: +81-6-6879-3489;
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michio Oda
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keita Kurosu
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Otani
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10) Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Markwell T, Perera L, Trapp J, Fielding A. Evaluation of MegaVoltage Cone Beam CT image quality with an unmodified Elekta Precise Linac and EPID: a feasibility study. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 37:291-302. [DOI: 10.1007/s13246-014-0258-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 02/26/2014] [Indexed: 11/30/2022]
|
6
|
Noel CE, Santanam L, Olsen JR, Baker KW, Parikh PJ. An automated method for adaptive radiation therapy for prostate cancer patients using continuous fiducial-based tracking. Phys Med Biol 2010; 55:65-82. [PMID: 19949260 DOI: 10.1088/0031-9155/55/1/005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electromagnetic tracking technology is primarily used for continuous prostate localization during radiotherapy, but offers potential value for evaluation of dosimetric coverage and adequacy of treatment for dynamic targets. We developed a highly automated method for daily computation of cumulative dosimetric effects of intra- and inter-fraction target motion for prostate cancer patients using fiducial-based electromagnetic tracking. A computer program utilizing real-time tracking data was written to (1) prospectively determine appropriate rotational/translational motion limits for patients treated with continuous isocenter localization; (2) retrospectively analyze dosimetric target coverage after daily treatment, and (3) visualize three-dimensional rotations and translations of the prostate with respect to the planned target volume and dose matrix. We present phantom testing and a patient case to validate and demonstrate the utility of this application. Gamma analysis of planar dose computed by our application demonstrated accuracy within 1%/1 mm. Dose computation of a patient treatment revealed high variation in minimum dose to the prostate (D(min)) over 40 fractions and a drop in the D(min) of approximately 8% between a 5 mm and a 3 mm PTV margin plan. The infrastructure has been created for patient-specific treatment evaluation using continuous tracking data. This application can be used to increase confidence in treatment delivery to targets influenced by motion.
Collapse
Affiliation(s)
- C E Noel
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|