1
|
Houlleberghs H, Dekker M, Lusseveld J, Pieters W, van Ravesteyn T, Verhoef S, Hofstra RMW, Te Riele H. Three-step site-directed mutagenesis screen identifies pathogenic MLH1 variants associated with Lynch syndrome. J Med Genet 2019; 57:308-315. [PMID: 31784484 DOI: 10.1136/jmedgenet-2019-106520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Inactivating mutations in the MLH1 DNA mismatch repair (MMR) gene underlie 42% of Lynch syndrome (LS) cases. LS is a cancer predisposition causing early onset colorectal and endometrial cancer. Nonsense and frameshift alterations unambiguously cause LS. The phenotype of missense mutations that only alter a single amino acid is often unclear. These variants of uncertain significance (VUS) hinder LS diagnosis and family screening and therefore functional tests are urgently needed. We developed a functional test for MLH1 VUS termed 'oligonucleotide-directed mutation screening' (ODMS). METHODS The MLH1 variant was introduced by oligonucleotide-directed gene modification in mouse embryonic stem cells that were subsequently exposed to the guanine analogue 6-thioguanine to determine whether the variant abrogated MMR. RESUTS In a proof-of-principle analysis, we demonstrate that ODMS can distinguish pathogenic and non-pathogenic MLH1 variants with a sensitivity of >95% and a specificity of >91%. We subsequently applied the screen to 51 MLH1 VUS and identified 31 pathogenic variants. CONCLUSION ODMS is a reliable tool to identify pathogenic MLH1 variants. Implementation in clinical diagnostics will improve clinical care of patients with suspected LS and their relatives.
Collapse
Affiliation(s)
- Hellen Houlleberghs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jarnick Lusseveld
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wietske Pieters
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas van Ravesteyn
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Senno Verhoef
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Abulí A, Bujanda L, Muñoz J, Buch S, Schafmayer C, Valeria Maiorana M, Veneroni S, van Wezel T, Liu T, Westers H, Esteban-Jurado C, Ocaña T, Piqué JM, Andreu M, Jover R, Carracedo A, Xicola RM, Llor X, Castells A, Dunlop M, Hofstra R, Lindblom A, Wijnen J, Peterlongo P, Hampe J, Ruiz-Ponte C, Castellví-Bel S. The MLH1 c.1852_1853delinsGC (p.K618A) variant in colorectal cancer: genetic association study in 18,723 individuals. PLoS One 2014; 9:e95022. [PMID: 24743384 PMCID: PMC3990597 DOI: 10.1371/journal.pone.0095022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/21/2014] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer is one of the most frequent neoplasms and an important cause of mortality in the developed world. Mendelian syndromes account for about 5% of the total burden of CRC, being Lynch syndrome and familial adenomatous polyposis the most common forms. Lynch syndrome tumors develop mainly as a consequence of defective DNA mismatch repair associated with germline mutations in MLH1, MSH2, MSH6 and PMS2. A significant proportion of variants identified by screening these genes correspond to missense or noncoding changes without a clear pathogenic consequence, and they are designated as "variants of uncertain significance", being the c.1852_1853delinsGC (p.K618A) variant in the MLH1 gene a clear example. The implication of this variant as a low-penetrance risk variant for CRC was assessed in the present study by performing a case-control study within a large cohort from the COGENT consortium-COST Action BM1206 including 18,723 individuals (8,055 colorectal cancer cases and 10,668 controls) and a case-only genotype-phenotype correlation with several clinical and pathological characteristics restricted to the Epicolon cohort. Our results showed no involvement of this variant as a low-penetrance variant for colorectal cancer genetic susceptibility and no association with any clinical and pathological characteristics including family history for this neoplasm or Lynch syndrome.
Collapse
Affiliation(s)
- Anna Abulí
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Catalonia, Spain
| | - Luis Bujanda
- Gastroenterology Department, Hospital Donostia, Networked Biomedical Research Centre for Hepatic and Digestive Diseases (CIBEREHD), Basque Country University, San Sebastián, Spain
| | - Jenifer Muñoz
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Stephan Buch
- Department of Medine I, University Hospital Dresden, Dresden, Germany
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Silvia Veneroni
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Liu
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Helga Westers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Clara Esteban-Jurado
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Teresa Ocaña
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Josep M. Piqué
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Montserrat Andreu
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Catalonia, Spain
| | - Rodrigo Jover
- Department of Gastroenterology, Hospital General d'Alacant, Alicante, Spain
| | - Angel Carracedo
- Galician Public Foundation of Genomic Medicine (FPGMX), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Genomics Medicine Group, Hospital Clínico, Santiago de Compostela, University of Santiago de Compostela, Galicia, Spain
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Rosa M. Xicola
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Xavier Llor
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Antoni Castells
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | | | - Malcolm Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Edinburgh, United Kingdom
| | - Robert Hofstra
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Juul Wijnen
- Departments of Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Jochen Hampe
- Department of Medine I, University Hospital Dresden, Dresden, Germany
| | - Clara Ruiz-Ponte
- Galician Public Foundation of Genomic Medicine (FPGMX), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Genomics Medicine Group, Hospital Clínico, Santiago de Compostela, University of Santiago de Compostela, Galicia, Spain
| | - Sergi Castellví-Bel
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
7
|
Thompson BA, Goldgar DE, Paterson C, Clendenning M, Walters R, Arnold S, Parsons MT, Walsh MD, Gallinger S, Haile RW, Hopper JL, Jenkins MA, LeMarchand L, Lindor NM, Newcomb PA, Thibodeau SN, Young JP, Buchanan DD, Tavtigian SV, Spurdle AB. A multifactorial likelihood model for MMR gene variant classification incorporating probabilities based on sequence bioinformatics and tumor characteristics: a report from the Colon Cancer Family Registry. Hum Mutat 2013; 34:200-9. [PMID: 22949379 PMCID: PMC3538359 DOI: 10.1002/humu.22213] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/22/2012] [Indexed: 01/04/2023]
Abstract
Mismatch repair (MMR) gene sequence variants of uncertain clinical significance are often identified in suspected Lynch syndrome families, and this constitutes a challenge for both researchers and clinicians. Multifactorial likelihood model approaches provide a quantitative measure of MMR variant pathogenicity, but first require input of likelihood ratios (LRs) for different MMR variation-associated characteristics from appropriate, well-characterized reference datasets. Microsatellite instability (MSI) and somatic BRAF tumor data for unselected colorectal cancer probands of known pathogenic variant status were used to derive LRs for tumor characteristics using the Colon Cancer Family Registry (CFR) resource. These tumor LRs were combined with variant segregation within families, and estimates of prior probability of pathogenicity based on sequence conservation and position, to analyze 44 unclassified variants identified initially in Australasian Colon CFR families. In addition, in vitro splicing analyses were conducted on the subset of variants based on bioinformatic splicing predictions. The LR in favor of pathogenicity was estimated to be ~12-fold for a colorectal tumor with a BRAF mutation-negative MSI-H phenotype. For 31 of the 44 variants, the posterior probabilities of pathogenicity were such that altered clinical management would be indicated. Our findings provide a working multifactorial likelihood model for classification that carefully considers mode of ascertainment for gene testing.
Collapse
Affiliation(s)
- Bryony A. Thompson
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - David E. Goldgar
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carol Paterson
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Mark Clendenning
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Rhiannon Walters
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Sven Arnold
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Michael T. Parsons
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Michael D. Walsh
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Steven Gallinger
- Cancer Care Ontario, Department of Surgery, Familial Gastrointestinal Cancer Registry, University of Toronto, Toronto, Ontario, Canada
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - John L. Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Loic LeMarchand
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Noralane M. Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Polly A. Newcomb
- Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Joanne P. Young
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Daniel D. Buchanan
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Sean V. Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Amanda B. Spurdle
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| |
Collapse
|