1
|
Yao M, Jiang L, Yan Y, Yu Y, Chen Y, Wang X, Feng Y, Cui Y, Zhou D, Gao F, Mao S. Analytical validation of the amplification refractory mutation system polymerase chain reaction-capillary electrophoresis assay to diagnose spinal muscular atrophy. Clin Chem Lab Med 2024; 62:2405-2414. [PMID: 38860968 DOI: 10.1515/cclm-2024-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/26/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVES Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletion and compound heterozygous mutations in survival motor neuron 1 (SMN1), with severity tied to the copy number of survival motor neuron 2 (SMN2). This study aimed to develop a rapid and comprehensive method for the diagnosis of SMA. METHODS A total of 292 children with clinically suspected SMA and 394 family members were detected by the amplification refractory mutation system polymerase chain reaction-capillary electrophoresis (ARMS-PCR-CE) method, which targeted 19 reported mutations, and the results were compared with those in multiplex ligation-dependent probe amplification (MLPA). Individuals with identified point mutations were further confirmed by SMN1 long-range PCR and Sanger sequencing. RESULTS A total of 202 children with SMA, 272 carriers, and 212 normal individuals were identified in this study. No difference was found in the R-value distribution of exons 7 and 8 in SMN1 and SMN2 among these cohorts, with coefficients of variation consistently below 0.08. To detect exon 7 and 8 copy numbers in SMN1 and SMN2, the ARMS-PCR-CE results were concordant with those of MLPA. Approximately 4.95 % (10/202) of the study patients had compound heterozygous mutations. CONCLUSIONS The ARMS-PCR-CE assay is a comprehensive, rapid, and accurate diagnostic method for SMA that simultaneously detects copy numbers of exons 7 and 8 in SMN1/SMN2, as well as 19 point mutations in SMN1 and 2 enhancers in SMN2. This approach can effectively reduce the time frame for diagnosis, facilitating early intervention and preventing birth defects.
Collapse
Affiliation(s)
- Mei Yao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Liya Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yue Yan
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yicheng Yu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yuwei Chen
- Xiamen Biofast Biotechnology Co., Ltd., Xiamen, P.R. China
| | - Xiaoyi Wang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yijie Feng
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yiqin Cui
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Feng Gao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Shanshan Mao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| |
Collapse
|
2
|
Chudakova D, Kuzenkova L, Fisenko A, Savostyanov K. In Search of Spinal Muscular Atrophy Disease Modifiers. Int J Mol Sci 2024; 25:11210. [PMID: 39456991 PMCID: PMC11508272 DOI: 10.3390/ijms252011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The 5q Spinal Muscular Atrophy (SMA) is a hereditary autosomal recessive disease caused by defects in the survival motor neuron (SMN1) gene encoding survival motor neuron (SMN) protein. Currently, it is the leading cause of infantile mortality worldwide. SMA is a progressive neurodegenerative disease with "continuum of clinical severity", which can be modulated by genetic and epigenetic factors known as disease modifiers (DMs). Individuals (even siblings) with the same defects in SMN1 gene might have strikingly different types of SMA, supposedly due to the impact of DMs. There are several therapeutic options for SMA, all of them focusing on the restoration of the SMN protein levels to normal. Determining DMs and the pathways in which they are involved might aid in enhancing existing curative approaches. Furthermore, DMs might become novel therapeutic targets or prognostic biomarkers of the disease. This narrative review provides a brief overview of the genetics and pathobiology of SMA, and its bona fide modifiers. We describe novel, emerging DMs, approaches and tools used to identify them, as well as their potential mechanisms of action and impact on disease severity. We also propose several disease-modifying molecular mechanisms which could provide a partial explanation of the staggering variability of SMA phenotypes.
Collapse
Affiliation(s)
| | | | | | - Kirill Savostyanov
- National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
3
|
Schüning T, Zeug A, Strienke K, Franz P, Tsiavaliaris G, Hensel N, Viero G, Ponimaskin E, Claus P. The spinal muscular atrophy gene product regulates actin dynamics. FASEB J 2024; 38:e70055. [PMID: 39305126 DOI: 10.1096/fj.202300183r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by low levels of the Survival of Motoneuron (SMN) protein. SMN interacts with and regulates the actin-binding protein profilin2a, thereby influencing actin dynamics. Dysfunctional actin dynamics caused by SMN loss disrupts neurite outgrowth, axonal pathfinding, and formation of functional synapses in neurons. Whether the SMN protein directly interacts with and regulates filamentous (F-) and monomeric globular (G-) actin is still elusive. In a quantitative single cell approach, we show that SMN loss leads to dysregulated F-/G-actin fractions. Furthermore, quantitative assessment of cell morphology suggests an F-actin organizational defect. Interestingly, this is mediated by an interaction of SMN with G- and F-actin. In co-immunoprecipitation, in-vitro pulldown and co-localization assays, we elucidated that this interaction is independent of the SMN-profilin2a interaction. Therefore, we suggest two populations being relevant for functional actin dynamics in healthy neurons: SMN-profilin2a-actin and SMN-actin. Additionally, those two populations may influence each other and therefore regulate binding of SMN to actin. In SMA, we showed a dysregulated co-localization pattern of SMN-actin which could only partially rescued by SMN restoration. However, dysregulation of F-/G-actin fractions was reduced by SMN restoration. Taken together, our results suggest a novel molecular function of SMN in binding to actin independent from SMN-profilin2a interaction.
Collapse
Affiliation(s)
- Tobias Schüning
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andre Zeug
- Institute of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Katharina Strienke
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Franz
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Niko Hensel
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gabriella Viero
- Institute of Biophysics (IBF), CNR Unit at Trento, Trento, Italy
| | - Evgeni Ponimaskin
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Claus
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Ouyang S, Peng X, Huang W, Bai J, Wang H, Jin Y, Jiao H, Wei M, Ge X, Song F, Qu Y. Association among biomarkers, phenotypes, and motor milestones in Chinese patients with 5q spinal muscular atrophy types 1-3. Front Neurol 2024; 15:1382410. [PMID: 39286802 PMCID: PMC11404040 DOI: 10.3389/fneur.2024.1382410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Background Biomarkers can be used to assess the severity of spinal muscular atrophy (5q SMA; SMA). Despite their potential, the relationship between biomarkers and clinical outcomes in SMA remains underexplored. This study aimed to assess the association among biomarkers, phenotypes, and motor milestones in Chinese patients diagnosed with SMA. Methods We collected retrospective clinical and follow-up data of disease-modifying therapy (DMT)-naïve patients with SMA at our center from 2019 to 2021. Four biomarkers were included: survival motor neuron 2 (SMN2) copies, neuronal apoptosis inhibitory protein (NAIP) copies, full-length SMN2 (fl-SMN2), and F-actin bundling protein plastin 3 (PLS3) transcript levels. Data were analyzed and stratified according to SMA subtype. Results Of the 123 patients, 30 were diagnosed with Type 1 (24.3%), 56 with Type 2 (45.5%), and 37 with Type 3 (30.1%). The mortality rate for Type 1 was 50%, with median survival times of 2 and 8 months for types 1a and 1b, respectively. All four biomarkers were correlated with disease severity. Notably, fl-SMN2 transcript levels increased with SMN2 copies and were higher in Type 2b than those in Type 2a (p = 0.028). Motor milestone deterioration was correlated with SMN2 copies, NAIP copies, and fl-SMN2 levels, while PLS3 levels were correlated with standing and walking function. Discussion Our findings suggest that SMN2 copies contribute to survival and that fl-SMN2 may serve as a valuable biomarker for phenotypic variability in SMA Type 2 subtypes. These insights can guide future research and clinical management of SMA.
Collapse
Affiliation(s)
- Shijia Ouyang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyin Peng
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Wenchen Huang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jinli Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Yuwei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Jiao
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Maoti Wei
- Center of Clinical Epidemiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Xiushan Ge
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Yujin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
5
|
Costa-Roger M, Blasco-Pérez L, Gerin L, Codina-Solà M, Leno-Colorado J, Gómez-García De la Banda M, Garcia-Uzquiano R, Saugier-Veber P, Drunat S, Quijano-Roy S, Tizzano EF. Complex SMN Hybrids Detected in a Cohort of 31 Patients With Spinal Muscular Atrophy. Neurol Genet 2024; 10:e200175. [PMID: 39035824 PMCID: PMC11259531 DOI: 10.1212/nxg.0000000000200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024]
Abstract
Background and Objectives Spinal muscular atrophy (SMA) is a recessive neuromuscular disorder caused by the loss or presence of point pathogenic variants in the SMN1 gene. The main positive modifier of the SMA phenotype is the number of copies of the SMN2 gene, a paralog of SMN1, which only produces around 10%-15% of functional SMN protein. The SMN2 copy number is inversely correlated with phenotype severity; however, discrepancies between the SMA type and the SMN2 copy number have been reported. The presence of SMN2-SMN1 hybrids has been proposed as a possible modifier of SMA disease. Methods We studied 31 patients with SMA, followed at a single center and molecularly diagnosed by Multiplex Ligand-Dependent Probe Amplification (MLPA), with a specific next-generation sequencing protocol to investigate their SMN2 genes in depth. Hybrid characterization also included bioinformatics haplotype phasing and specific PCRs to resolve each SMN2-SMN1 hybrid structure. Results We detected SMN2-SMN1 hybrid genes in 45.2% of the patients (14/31), the highest rate reported to date. This represents a total of 25 hybrid alleles, with 9 different structures, of which only 4 are detectable by MLPA. Of particular interest were 2 patients who presented 4 SMN2-SMN1 hybrid copies each and no pure SMN2 copies, an event reported here for the first time. No clear trend between the presence of hybrids and a milder phenotype was observed, although 5 of the patients with hybrid copies showed a better-than-expected phenotype. The higher hybrid detection rate in our cohort may be due to both the methodology applied, which allows an in-depth characterization of the SMN genes and the ethnicity of the patients, mainly of African origin. Discussion Although hybrid genes have been proposed to be beneficial for patients with SMA, our work revealed great complexity and variability between hybrid structures; therefore, each hybrid structure should be studied independently to determine its contribution to the SMA phenotype. Large-scale studies are needed to gain a better understanding of the function and implications of SMN2-SMN1 hybrid copies, improving genotype-phenotype correlations and prediction of the evolution of patients with SMA.
Collapse
Affiliation(s)
- Mar Costa-Roger
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Laura Blasco-Pérez
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Lorene Gerin
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Marta Codina-Solà
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Jordi Leno-Colorado
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Marta Gómez-García De la Banda
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Rocio Garcia-Uzquiano
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Pascale Saugier-Veber
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Séverine Drunat
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Susana Quijano-Roy
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| | - Eduardo F Tizzano
- From the Medicine Genetics Group (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Vall d'Hebron Research Institute (VHIR); Department of Clinical and Molecular Genetics (M.C.-R., L.B.-P., M.C.-S., J.L.-C., E.F.T.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Neuromuscular Unit (L.G., M.G.-G.D.B., R.G.-U., P.S.-V., S.D., S.Q.-R.), Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches; and Laboratoire END-ICAP - UMR 1179 (INSERM/UVSQ) (S.Q.-R.), Equipe 1 Biothérapies des maladies neuromusculaires, Montigny-Le-Bretonneux, France
| |
Collapse
|
6
|
Cook SL, Stout C, Kirkeby L, Vidal-Folch N, Oglesbee D, Hasadsri L, Selcen D, Milone M, Anderson D, Staff NP. SMN1 c.5C>G (p.Ala2Gly) missense variant, a challenging molecular SMA diagnosis associated with mild disease, preserves SMN nuclear gems in patient-specific fibroblasts. Front Genet 2024; 15:1406819. [PMID: 39139818 PMCID: PMC11319185 DOI: 10.3389/fgene.2024.1406819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Spinal muscular atrophy (SMA) is caused by homozygous loss of the SMN1 gene with SMN2 gene copy number correlating with disease severity. Rarely SMA is caused by a deletion on one allele and a pathogenic variant on the other. The pathogenic missense variant c.5C>G (p.Ala2Gly) correlates with a mild disease phenotype that does not correlate with SMN2 copy number. In a mouse model the c.5C>G transgene produces SMN that is thought to form partially functional SMN complexes, but levels in humans have not yet been investigated. Methods We identified two patients with mild SMA caused by a heterozygous deletion of SMN1 and the heterozygous variant, c.5C>G. Molecular findings were confirmed with deletion/duplication analysis and Sanger sequencing. Skin fibroblasts were collected and cultured, and SMN expression was analyzed using immunofluorescence. Results Two patients with slowly progressing mild weakness were confirmed to have heterozygous pathogenic missense variant c.5C>G and a heterozygous deletion of SMN1. Their clinical presentation revealed much milder disease progression than patients with matched SMN2 copy number. Analysis of the patients' fibroblasts revealed much higher numbers of SMN nuclear complexes than a patient with a homozygous SMN1 deletion and matched SMN2 copy number. Conclusions These case reports reinforce that the rare c.5C>G variant causes mild disease. Furthermore, the analysis of SMA nuclear gems in patient samples supports the theory that the p.Ala2Gly SMN can form partially functional SMN complexes that may carry out essential cellular functions and result in mild disease.
Collapse
Affiliation(s)
- Sara L. Cook
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Christian Stout
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Lindsey Kirkeby
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Daniel Anderson
- Department of Neurology, Mayo Clinic Health System, La Crosse, WI, United States
| | - Nathan P. Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Ma K, Zhang K, Chen D, Wang C, Abdalla M, Zhang H, Tian R, Liu Y, Song L, Zhang X, Liu F, Liu G, Wang D. Real-world evidence: Risdiplam in a patient with spinal muscular atrophy type I with a novel splicing mutation and one SMN2 copy. Hum Mol Genet 2024; 33:1120-1130. [PMID: 38520738 PMCID: PMC11190614 DOI: 10.1093/hmg/ddae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.
Collapse
Affiliation(s)
- Kai Ma
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
- Department of neurology, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Kaihui Zhang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Defang Chen
- The Office of operation management committee, Central Hospital Affiliated to Shandong First Medical University, Jiefang road NO. 105, Jinan, SD 250022, PR China
| | - Chuan Wang
- Science, Education and Foreign Affairs Section, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Mohnad Abdalla
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Haozheng Zhang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Rujin Tian
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Yang Liu
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
- Ophthalmology department, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Li Song
- Pediatric Hematology and Oncology, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Xinyi Zhang
- Intensive Care Unit, The Second People’s Hospital of Shandong Province, Duanxing west road NO. 4, Jinan, SD 250022, PR China
| | - Fangfang Liu
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jiefang road NO. 105, Jinan, SD 250022, PR China
| | - Guohua Liu
- Ophthalmology department, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Dong Wang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| |
Collapse
|
8
|
Wang N, Jiao K, He J, Zhu B, Cheng N, Sun J, Chen L, Chen W, Gong L, Qiao K, Xi J, Wu Q, Zhao C, Zhu W. Diagnosis of Challenging Spinal Muscular Atrophy Cases with Long-Read Sequencing. J Mol Diagn 2024; 26:364-373. [PMID: 38490302 DOI: 10.1016/j.jmoldx.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder primarily caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene. This study assesses the diagnostic potential of long-read sequencing (LRS) in three patients with SMA. For Patient 1, who has a heterozygous SMN1 deletion, LRS unveiled a missense mutation in SMN1 exon 5. In Patient 2, an Alu/Alu-mediated rearrangement covering the SMN1 promoter and exon 1 was identified through a blend of multiplex ligation-dependent probe amplification, LRS, and PCR across the breakpoint. The third patient, born to a consanguineous family, bore four copies of hybrid SMN genes. LRS determined the genomic structures, indicating two distinct hybrids of SMN2 exon 7 and SMN1 exon 8. However, a discrepancy was found between the SMN1/SMN2 ratio interpretations by LRS (0:2) and multiplex ligation-dependent probe amplification (0:4), which suggested a limitation of LRS in SMA diagnosis. In conclusion, this newly adapted long PCR-based third-generation sequencing introduces an additional avenue for SMA diagnosis.
Collapse
Affiliation(s)
- Ningning Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Chen
- Department of Neurology, Nantong First People's Hospital, Nantong, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Lingyun Gong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Qiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qihan Wu
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Li L, Menezes MP, Smith M, Forbes R, Züchner S, Burgess A, Woodcock IR, Delatycki MB, Yiu EM. Rare homozygous disease-associated sequence variants in children with spinal muscular atrophy: a phenotypic description and review of the literature. Neuromuscul Disord 2024; 37:29-35. [PMID: 38520993 DOI: 10.1016/j.nmd.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
5q-associated spinal muscular atrophy (SMA) is the most common autosomal recessive neurological disease. Depletion in functional SMN protein leads to dysfunction and irreversible degeneration of the motor neurons. Over 95 % of individuals with SMA have homozygous exon 7 deletions in the SMN1 gene. Most of the remaining 4-5 % are compound heterozygous for deletion and a disease-associated sequence variant in the non-deleted allele. Individuals with SMA due to bi-allelic SMN1 sequence variants have rarely been reported. Data regarding their clinical phenotype, disease progression, outcome and treatment response are sparse. This study describes six individuals from three families, all with homozygous sequence variants in SMN1, and four of whom received treatment with disease-modifying therapies. We also describe the challenges faced during the diagnostic process and intrafamilial phenotypic variability observed between siblings.
Collapse
Affiliation(s)
- Limin Li
- Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Division of Paediatric Neurology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Manoj P Menezes
- T.Y. Nelson Department of Neurology and Neurosurgery and Kids Neuroscience Centre, The Children's Hospital Westmead, Sydney, New South Wales, Australia; Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Melanie Smith
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Victoria, Australia
| | - Robin Forbes
- Neuroscience Research Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Stephan Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, United States of America
| | - Amber Burgess
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Victoria, Australia
| | - Ian R Woodcock
- Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Neuroscience Research Group, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia; Bruce Lefroy Centre, Murdoch Children's Research Institute, Australia
| | - Eppie M Yiu
- Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Neuroscience Research Group, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Qu Y, Bai J, Jiao H, Qi H, Huang W, OuYang S, Peng X, Jin Y, Wang H, Song F. Variants located in intron 6 of SMN1 lead to misdiagnosis in genetic detection and screening for SMA. Heliyon 2024; 10:e28015. [PMID: 38515714 PMCID: PMC10955315 DOI: 10.1016/j.heliyon.2024.e28015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Accurate genetic diagnosis is necessary for guiding the treatment of spinal muscular atrophy (SMA). An updated consensus for the diagnosis and management of SMA was published in 2018. However, clinicians should remain alert to some pitfalls of genetic testing that can occur when following a routine diagnosis. In this study, we report the diagnosis of three unrelated individuals who were initially misdiagnosed as carrying a homozygous deletion of SMN1 exon 7. MLPA (P060 and P021) and qPCR were used to detect the copy number of SMN. SMN1 variants were identified by SMN1 clone and next-generation sequencing (NGS). Transcription of SMN1 variants was detected using qRT-PCR and ex vivo splicing analysis. Among the three individuals, one was identified as a patient with SMA carrying a heterozygous deletion and a pathogenic variant (c.835-17_835-14delCTTT) of SMN1, one was a healthy carrier only carrying a heterozygous deletion of SMN1 exon 7, and the third was a patient with nemaline myopathy 2 carrying a heterozygous deletion of SMN1 exon 7. The misdiagnosis of these individuals was attributed to the presence of the c.835-17_835-14delCTTT or c.835-17C > G variants in SMN1 intron 6, which affect the amplification of SMN1 exon 7 during MLPA-P060 and qPCR testing. However, MLPA-P021 and NGS analyses were unaffected by these variants. These results support that additional detection methods should be employed in cases where the SMN1 copy number is ambiguous to minimize the misdiagnosis of SMA.
Collapse
Affiliation(s)
- Yujin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jinli Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Jiao
- Department of Neurology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Hong Qi
- Prenatal Diagnosis Center, Beijing Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Wenchen Huang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Shijia OuYang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyin Peng
- Department of Neurology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Yuwei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
11
|
Bai J, Qu Y, Huang W, Meng W, Zhan J, Wang H, Hou W, Jin Y, Mao A, Song F. A high-fidelity long-read sequencing-based approach enables accurate and effective genetic diagnosis of spinal muscular atrophy. Clin Chim Acta 2024; 553:117743. [PMID: 38158006 DOI: 10.1016/j.cca.2023.117743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND We aimed to develop a high-fidelity long-read sequencing (LRS)-based approach to detect SMN gene variants in one step. It is challenging for conventional step-wise methods to simultaneously detect all kinds of variations between homologous SMN1 and SMN2. METHODS In this study, LRS was developed to analyze copy numbers (CNs), full sequences, and structure of SMN1 and SMN2. The results were compared with those from the step-wise methods in 202 samples from 67 families. RESULTS LRS achieved 100% (202/202) and 99.5% (201/202) accuracy for SMN1 and SMN2 CNs, respectively. It corrected SMN1 CNs from MLPA, which was caused by SNVs/indels that located in probe-binding region. LRS identified 23 SNVs/indels distributing throughout SMN1, including c.22dup and c.884A > T in trans-configuration, and a de novo variant c.41_42delinsC for the first time. LRS also identified a SMN2 variant c.346A > G. Moreover, it successfully determined Alu-mediated 8978-bp deletion encompassing exon 2a-5 and 1415-bp deletion disrupting exon 1, and the exact breakpoints of large deletions. Through haplotype-based pedigree trio analysis, LRS identified SMN1 2 + 0 carriers, and determined the distribution of SMN1 and SMN2 on two chromosomes. CONCLUSIONS LRS represents a more comprehensive and accurate diagnosis approach that is beneficial to early treatment and effective management of SMA.
Collapse
Affiliation(s)
- Jinli Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yujin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Wenchen Huang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing 102200, China
| | - Jiahan Zhan
- Berry Genomics Corporation, Beijing 102200, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Wenqi Hou
- Berry Genomics Corporation, Beijing 102200, China
| | - Yuwei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing 102200, China.
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
12
|
Sonehara S, Bo R, Nambu Y, Iketani K, Lee T, Shimomura H, Ueda M, Takeshima Y, Iijima K, Nozu K, Nishio H, Awano H. Newborn Screening for Spinal Muscular Atrophy: A 2.5-Year Experience in Hyogo Prefecture, Japan. Genes (Basel) 2023; 14:2211. [PMID: 38137033 PMCID: PMC10742789 DOI: 10.3390/genes14122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Newborn screening (NBS) for spinal muscular atrophy (SMA) is necessary, as favorable outcomes can be achieved by treatment with disease-modifying drugs in early infancy. Although SMA-NBS has been initiated in Japan, its clinical results have not been fully reported. We report the findings of the initial 2.5 years of a pilot SMA-NBS of approximately 16,000 infants conducted from February 2021 in Hyogo Prefecture, Japan. Clinical data of 17 infants who tested positive were retrospectively obtained from the NBS follow-up centers participating in this multicenter cohort observational study. Genetic testing revealed 14 false positives, and three infants were diagnosed with SMA. Case 1 had two copies of survival motor neuron (SMN) 2 and showed SMA-related symptoms at diagnosis. Case 2 was asymptomatic, with two copies of SMN2. Asymptomatic case 3 had four copies of SMN2 exon 7, including the SMN1/2 hybrid gene. Cases 1 and 2 were treated within 1 month and case 3 at 8 months. All the patients showed improved motor function scores and did not require respiratory support. The identification of infants with SMA via NBS and early treatment improved their motor and respiratory outcomes. Thus, implementation of SMA-NBS at a nationwide scale should be considered.
Collapse
Affiliation(s)
- Shoko Sonehara
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (S.S.); (R.B.); (Y.N.); (K.I.); (K.N.)
| | - Ryosuke Bo
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (S.S.); (R.B.); (Y.N.); (K.I.); (K.N.)
| | - Yoshinori Nambu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (S.S.); (R.B.); (Y.N.); (K.I.); (K.N.)
| | - Kiiko Iketani
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (S.S.); (R.B.); (Y.N.); (K.I.); (K.N.)
- Hyogo Prefectural Kobe Children’s Hospital, 1-6-7 Minatozimaminami-cho, Chuo-ku, Kobe 650-0047, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.L.); (H.S.); (Y.T.)
| | - Hideki Shimomura
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.L.); (H.S.); (Y.T.)
| | - Masaaki Ueda
- Department of Pediatrics, Toyooka Public Hospital, 1094 Tobera, Toyooka 668-8501, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (T.L.); (H.S.); (Y.T.)
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children’s Hospital, 1-6-7 Minatozimaminami-cho, Chuo-ku, Kobe 650-0047, Japan;
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (S.S.); (R.B.); (Y.N.); (K.I.); (K.N.)
| | - Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan;
| | - Hiroyuki Awano
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
13
|
Hu Y, Wei L, Li A, Liu T, Jiang Y, Xie C, Wang K. Cognitive impairment in Chinese adult patients with type III spinal muscular atrophy without disease-modifying treatment. Front Neurol 2023; 14:1226043. [PMID: 38020636 PMCID: PMC10655145 DOI: 10.3389/fneur.2023.1226043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Spinal muscular atrophy (SMA) is a neurodegenerative disorder characterized by the degeneration of motor neurons in the spinal cord. It remains uncertain whether the cognitive performance of adult patients with SMA is impaired. The objective of this study was to assess the cognitive profile of adult Chinese patients with SMA and the association between clinical features and cognitive ability, particularly executive function. Methods This cross-sectional study included 22 untreated adult patients with type III SMA and 20 healthy subjects. The following variables were assessed: general intelligence, memory, attention, language, executive function, depression, anxiety, and other demographic and clinical parameters. In addition, physical function was evaluated using the Hammersmith Functional Motor Scale Expanded (HFMSE), the Revised Upper Limb Module (RULM), and the 6-Minute Walk Test (6MWT). Results SMA patients had lower scores than healthy subjects in the Verbal Fluency Test, Stroop effect, Total Errors, Perseverative Responses, Perseverative Errors, and Non-perseverative Errors in the Wisconsin Card Sorting Test, showing impaired abilities of SMA patients in executive function. In the Attention Network Test (ANT), the results indicated that the SMA patients also had selective deficits in their executive control networks. Ambulant patients had better executive function test performance than non-ambulant ones. Compromised executive abilities in patients with SMA were correlated with a younger age at onset, poorer motor function, and higher levels of anxiety and depression. Conclusion Our study presented the distribution of cognitive impairment in a Chinese cohort with SMA. Patients with type III SMA showed selective deficits in executive function, which may be associated with disease severity, physical impairment, depression and anxiety. Future cognitive studies, accounting for motor and emotional impairment, are needed to evaluate if executive impairment is driven by specific brain changes or by those confounding factors.
Collapse
Affiliation(s)
- Ying Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Ling Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Aonan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yubao Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Chengjuan Xie
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| |
Collapse
|
14
|
Votsi C, Koutsou P, Ververis A, Georghiou A, Nicolaou P, Tanteles G, Christodoulou K. Spinal muscular atrophy type I associated with a novel SMN1 splicing variant that disrupts the expression of the functional transcript. Front Neurol 2023; 14:1241195. [PMID: 37799281 PMCID: PMC10548546 DOI: 10.3389/fneur.2023.1241195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by pathogenic variants in the SMN1 gene. The majority of SMA patients harbor a homozygous deletion of SMN1 exon 7 (95%). Heterozygosity for a conventional variant and a deletion is rare (5%) and not easily detected, due to the highly homologous SMN2 gene interference. SMN2 mainly produces a truncated non-functional protein (SMN-d7) instead of the full-length functional (SMN-FL). We hereby report a novel SMN1 splicing variant in an infant with severe SMA. Methods MLPA was used for SMN1/2 exon dosage determination. Sanger sequencing approaches and long-range PCR were employed to search for an SMN1 variant. Conventional and improved Real-time PCR assays were developed for the qualitative and quantitative SMN1/2 RNA analysis. Results The novel SMN1 splice-site variant c.835-8_835-5delinsG, was identified in compound heterozygosity with SMN1 exons 7/8 deletion. RNA studies revealed complete absence of SMN1 exon 7, thus confirming a disruptive effect of the variant on SMN1 splicing. No expression of the functional SMN1-FL transcript, remarkable expression of the SMN1-d7 and increased levels of the SMN2-FL/SMN2-d7 transcripts were observed. Discussion We verified the occurrence of a non-deletion SMN1 variant and supported its pathogenicity, thus expanding the SMN1 variants spectrum. We discuss the updated SMA genetic findings in the Cypriot population, highlighting an increased percentage of intragenic variants compared to other populations.
Collapse
Affiliation(s)
- Christina Votsi
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pantelitsa Koutsou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Antonis Ververis
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anthi Georghiou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Tanteles
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
15
|
Tan J, Zhang J, Sun R, Jiang Z, Wang Y, Ma D, Jiao J, Chen H, Lin Y, Zhang Q, Xu Z, Hu P. Evaluating the performance of four assays for carrier screening of spinal muscular atrophy. Clin Chim Acta 2023; 548:117496. [PMID: 37479010 DOI: 10.1016/j.cca.2023.117496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIMS Spinal muscular atrophy (SMA) is an autosomal recessive inherited neuromuscular condition caused by biallelic mutations in the survival of motor neuron 1 (SMN1) gene. A homozygous deletion of the SMN1 gene accounts for approximately 95-98% of SMA patients. A highly homologous gene survival motor neuron 2 (SMN2) can partially compensate for SMN1 deletion, and its copy number is associated with disease severity. Population-based carrier screening by simultaneous quantification of SMN1 and SMN2 copy numbers is the best method to prevent SMA. MATERIALS AND METHODS In this study, a total of 516 samples were re-tested for the SMN1 copy number by using quantitative polymerase chain reaction (qPCR), multiplex ligation probe amplification (MLPA), droplet digital PCR (ddPCR), high-resolution melting (HRM) analysis, and PCR-based capillary electrophoresis (PCR/CE) simultaneously. Then, the performance of these methods was compared by using MLPA results as the reference. RESULTS The results of qPCR, ddPCR, HRM, and PCR/CE in detecting heterozygous deletion of SMN1 exon 7 and the results of ddPCR, HRM, and PCR/CE in detecting ≥2 copies of SMN1 exon7 are totally consistent with those of MLPA. The sensitivity and specificity of qPCR for detection of 2 copies of SMN1 exon 7 were 99.7% and 98.8%, respectively. The sensitivity and specificity of qPCR for detection of >2 copies of SMN1 exon 7 were 96.3% and 99.8%, respectively. Compared with the MLPA results, the sensitivity and specificity of qPCR and HRM for detection of heterozygous deletion of SMN1 exon 8 were 100% and 100%, respectively. They were 99.4% and 100%, respectively for detection of 2 copies, and 100% and 100%, respectively for detection of >2 copies. The results of PCR/CE in detecting SMN1 exon 8 were consistent with those of MLPA. CONCLUSION All these four methods show excellent performance in detecting heterozygous deletion of SMN1 exon 7. All PCR/CE results are totally concordant with those of MLPA. As the most cost-effective method, qPCR also shows high sensitivity and specificity in detecting SMN1. Taken together, our study provides useful information to select appropriate methods for SMA carrier screening.
Collapse
Affiliation(s)
- Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Ruihong Sun
- Department of Laboratory Medicine, The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhu Jiang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Yuguo Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Jiao Jiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Hao Chen
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Yingchun Lin
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Qinxin Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China.
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China.
| |
Collapse
|
16
|
Huang Z, Yang Q, Ye J, Huang J, Lin J, Chen J, Liang Z, Cao Z. Screening and prenatal diagnosis of survival motor neuron gene deletion in pregnant women in Zhaoqing city, Guangdong Province. BMC Med Genomics 2023; 16:39. [PMID: 36859245 PMCID: PMC9976494 DOI: 10.1186/s12920-023-01468-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE A total of 5,200 pregnant women in Zhaoqing city, Guangdong Province, were screened to identify spinal muscular atrophy (SMA) mutation carriers to guide the prevention of SMA and prevent the birth of children with SMA. METHODS Exons 7 and 8 (E7 and E8) of the survival motor neuron (SMN) 1 gene were detected in women using real-time fluorescence quantitative polymerase chain reaction. SMN1 and SMN2 copy numbers in those who were initially identified as carriers were verified via targeted region capture and next-generation sequencing. When both partners were identified as carriers, prenatal diagnosis of the fetus was performed. RESULTS Among the screened women, 75 SMA carriers (71 cases had both E7 and E8 heterozygous deletions and 4 cases only had an E7 heterozygous deletion) were identified, with a carrier frequency of 1.44% (95% confidence interval: 1.31-1.65%). Three couples where both spouses were identified as SMA carriers, and their three fetuses were subjected to prenatal genetic analysis. Of the three, one had homozygous deletions of E7 and E8 and the other two had heterozygous deletions of E7 and E8. After a detailed prenatal consultation, the former couple decided to terminate the pregnancy. CONCLUSION Through screening and prenatal diagnosis of pregnant women in Zhaoqing city, Guangdong Province, the incidence of SMA can be reduced, prevention of birth defects can be improved, incidence of birth defects can be effectively minimized.
Collapse
Affiliation(s)
- Zhiwei Huang
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China. .,Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China. .,Clinical Laboratory, The Second People's Hospital of Zhaoqing, No. 2, Jiansheer Street, 526000, Zhaoqing City, Guangdong province, The People's Republic of China.
| | - Qingchan Yang
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China
| | - Jianxiang Ye
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China
| | - Jianxing Huang
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China
| | - Jin Lin
- Obstetrical Department, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China
| | - Jing Chen
- Prenatal Diagnosis Center, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China
| | - Zizhao Liang
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China
| | - Zijie Cao
- Clinical Laboratory, The Second People's Hospital of Zhaoqing, Zhaoqing, The People's Republic of China
| |
Collapse
|
17
|
Bai J, Qu Y, OuYang S, Jiao H, Wang Y, Li J, Huang W, Zhao Y, Peng X, Wang D, Jin Y, Wang H, Song F. Novel Alu-mediated deletions of the SMN1 gene were identified by ultra-long read sequencing technology in patients with spinal muscular atrophy. Neuromuscul Disord 2023; 33:382-390. [PMID: 37023488 DOI: 10.1016/j.nmd.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by biallelic variants of the survival motor neuron 1 (SMN1) gene. In this study, our aim was to make a molecular diagnosis in two patients with SMA carrying only one SMN1 copy number. Using ultra-long read sequencing (Ultra-LRS), 1415 bp deletion and 3348 bp deletion of the SMN1 gene were identified in patient 1 and the father of patient 2, respectively. Ultra-LRS revealed two novel deletions, starting from the SMN1 promoter to intron 1. It also accurately provided the location of the deletion breakpoints in the SMN1 gene: chr5 g.70,924,798-70,926,212 for a 1415 bp deletion; chr5 g.70,922,695-70,926,042 for a 3348 bp deletion. By analyzing the breakpoint junctions, we identified that these genomic sequences were composed of Alu sequences, including AluJb, AluYm1, AluSq, and AluYm1, indicating that Alu-mediated rearrangements are a mechanism of SMN1 deletion events. In addition, full-length SMN1 transcripts and SMN protein in patient 1 were significantly decreased (p < 0.01), suggesting that a 1415 bp deletion that included the transcription and translation initiation sites of the SMN1 gene had severe consequences for SMN expression. Ultra-LRS can easily distinguish highly homozygous genes compared to other detection technologies, which is useful for detecting SMN1 intragenic mutations, to quickly discover structural rearrangements and to precisely present the breakpoint positions.
Collapse
|
18
|
Detering NT, Schüning T, Hensel N, Claus P. The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci 2022; 79:497. [PMID: 36006469 PMCID: PMC11071818 DOI: 10.1007/s00018-022-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself. Posttranslational modifications (PTMs) of proteins regulate multiple functions and processes, including activity, cellular trafficking, and stability. Several PTM sites have been identified within the SMN sequence. Here, we map the identified SMN PTMs highlighting phosphorylation as a key regulator affecting localization, stability and functions of SMN. Furthermore, we propose SMN phosphorylation as a crucial factor for intracellular interaction and cellular distribution of SMN. We outline the relevance of phosphorylation of the spinal muscular atrophy (SMA) gene product SMN with regard to basic housekeeping functions of SMN impaired in this neurodegenerative disease. Finally, we compare SMA patient mutations with putative and verified phosphorylation sites. Thus, we emphasize the importance of phosphorylation as a cellular modulator in a clinical perspective as a potential additional target for combinatorial SMA treatment strategies.
Collapse
Affiliation(s)
- Nora Tula Detering
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Tobias Schüning
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Niko Hensel
- Ottawa Hospital Research Institute (OHRI), Ottawa, Canada
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
19
|
Li S, Han X, Xu Y, Chang C, Gao L, Li J, Lu Y, Mao A, Wang Y. Comprehensive Analysis of Spinal Muscular Atrophy: SMN1 Copy Number, Intragenic Mutation, and 2 + 0 Carrier Analysis by Third-Generation Sequencing. J Mol Diagn 2022; 24:1009-1020. [PMID: 35659528 DOI: 10.1016/j.jmoldx.2022.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023] Open
Abstract
Population-wide carrier screening for spinal muscular atrophy (SMA) is recommended by the American College of Medical Genetics and Genomics. However, the methods used currently mainly focus on SMN1 copy number and fail to identify carriers with pathogenic intragenic mutations and silent (2 + 0) carriers. We developed a method termed comprehensive analysis of SMA (CASMA) based on long-range PCR and third-generation sequencing of full-length and downstream regions of SMN1/2. The sensitivity and specificity of CASMA to detect SMA carriers with one copy of SMN1 were 100% (n = 101) and 99.2% (n = 236), respectively. CASMA confirmed three SMN1 intragenic mutations and pinpointed an inframe mutation c.661_666del to SMN2, which was misreported to SMN1 by allele-specific long-range nested PCR plus Sanger sequencing. CASMA also correctly predicted 8 of 16 samples (50%) with SMN1 duplication alleles. CASMA was expected to increase the detection rate of SMA carriers from 91% to 98% and decrease the residual risk ratio from 1:415 to 1:1868 after negative results of two SMN1 copies in the Chinese population. CASMA presents a comprehensive approach for identifying SMN1 and SMN2 copy number, intragenic mutations, and potential silent carriers that significantly reduces the residual risk ratio in SMA carrier screening and has great clinical utility.
Collapse
Affiliation(s)
- Shuyuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Han
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxin Chang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Li
- Berry Genomics Corporation, Beijing, China
| | - Yulin Lu
- Berry Genomics Corporation, Beijing, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, China.
| | - Yanlin Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
The Importance of Digging into the Genetics of SMN Genes in the Therapeutic Scenario of Spinal Muscular Atrophy. Int J Mol Sci 2021; 22:ijms22169029. [PMID: 34445733 PMCID: PMC8396600 DOI: 10.3390/ijms22169029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
After 26 years of discovery of the determinant survival motor neuron 1 and the modifier survival motor neuron 2 genes (SMN1 and SMN2, respectively), three SMN-dependent specific therapies are already approved by FDA and EMA and, as a consequence, worldwide SMA patients are currently under clinical investigation and treatment. Bi-allelic pathogenic variants (mostly deletions) in SMN1 should be detected in SMA patients to confirm the disease. Determination of SMN2 copy number has been historically employed to correlate with the phenotype, predict disease evolution, stratify patients for clinical trials and to define those eligible for treatment. In view that discordant genotype-phenotype correlations are present in SMA, besides technical issues with detection of SMN2 copy number, we have hypothesized that copy number determination is only the tip of the iceberg and that more deepen studies of variants, sequencing and structures of the SMN2 genes are necessary for a better understanding of the disease as well as to investigate possible influences in treatment responses. Here, we highlight the importance of a comprehensive approach of SMN1 and SMN2 genetics with the perspective to apply for better prediction of SMA in positive neonatal screening cases and early diagnosis to start treatments.
Collapse
|
21
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Niba ETE, Nishio H, Wijaya YOS, Lai PS, Tozawa T, Chiyonobu T, Yamadera M, Okamoto K, Awano H, Takeshima Y, Saito T, Shinohara M. Clinical phenotypes of spinal muscular atrophy patients with hybrid SMN gene. Brain Dev 2021; 43:294-302. [PMID: 33036822 DOI: 10.1016/j.braindev.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a neuromuscular disease caused by homozygous deletion of SMN1 exons 7 and 8. However, exon 8 is retained in some cases, where SMN2 exon 7 recombines with SMN1 exon 8, forming a hybrid SMN gene. It remains unknown how the hybrid SMN gene contribute to the SMA phenotype. METHOD We analyzed 515 patients with clinical suspicion for SMA. SMN1 exons 7 and 8 deletion was detected by PCR followed by enzyme digestion. Hybrid SMN genes were further analyzed by nucleotide sequencing. SMN2 copy number was determined by real-time PCR. RESULTS SMN1 exon 7 was deleted in 228 out of 515 patients, and SMN1 exon 8 was also deleted in 204 out of the 228 patients. The remaining 24 patients were judged to carry a hybrid SMN gene. In the patients with SMN1 exon 7 deletion, the frequency of the severe phenotype was significantly lower in the patients with hybrid SMN gene than in the patients without hybrid SMN gene. However, as for the distribution of SMN2 exon 7 copy number among the clinical phenotypes, there was no significant difference between both groups of SMA patients with or without hybrid SMN gene. CONCLUSION Hybrid SMN genes are not rare in Japanese SMA patients, and it appears to be associated with a less severe phenotype. The phenotype of patients with hybrid SMN gene was determined by the copy number of SMN2 exon 7, as similarly for the patients without hybrid SMN gene.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan; Faculty of Medical Rehabilitation, Kobe Gakuin University, Kobe, Japan.
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Takenori Tozawa
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Misaki Yamadera
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan.
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, Ehime, Japan.
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan.
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
23
|
Sharifi Z, Taheri M, Fallah MS, Abiri M, Golnabi F, Bagherian H, Zeinali R, Farahzadi H, Alborji M, Tehrani PG, Amini M, Asnavandi S, Hashemi M, Forouzesh F, Zeinali S. Comprehensive Mutation Analysis and Report of 12 Novel Mutations in a Cohort of Patients with Spinal Muscular Atrophy in Iran. J Mol Neurosci 2021; 71:2281-2298. [PMID: 33481221 DOI: 10.1007/s12031-020-01789-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophies (SMAs) are a heterogeneous group of neuromuscular diseases characterized by loss of motor neurons, muscle weakness, hypotonia and muscle atrophy, with different modes of inheritance; however, the survival motor neuron 1 (SMN1) gene is predominantly involved. The aims of the current study were to clarify the genetic basis of SMA and determine the mutation spectrum of SMN1 and other associated genes, in order to provide molecular information for more accurate diagnosis and future prospects for treatment. We performed a comprehensive analysis of 5q SMA in 1765 individuals including 528 patients from 432 unrelated families with at least one child with suspected clinical presentation of SMA. Copy number variations of the SMN1 and SMN2 genes and linkage analysis were performed using multiplex ligation-dependent probe amplification (MLPA) and short tandem repeat (STR) markers linked to the SMN1 gene. Cases without mutation in the SMA locus on 5q were analyzed for the DNAJB2, IGHMBP2, SIGMAR1 and PLEKHG5 genes using linked STR markers. Sanger sequencing of whole genes was performed for cases with homozygous haplotypes. Whole-genome sequencing (WGS) and whole-exome analysis was conducted for some of the remaining cases. Mutations in the SMN1 gene were identified in 287 (66.43%) families including 269 patients (62.26%) with homozygous deletion of the entire SMN1 gene. Only one of the patients had a homozygous point mutation in the SMN1 gene. Among the remaining families, three families showed mutations in either the DNAJB2, SIGMAR1 or PLEKHG5 genes, which were linked using STR analysis and Sanger sequencing. From 10 families who underwent WGS, we found six homozygous point mutations in six families for either the TNNT1, TPM3, TTN, SACS or COL6A2 genes. Two mutations in the PLA2G6 gene were also found in another patient as compound heterozygous. This rather large cohort allowed us to identify genotype patterns in Iranian 5q SMA patients. The process of identifying 11 mutations (9 novel) in 9 different genes among non-5q SMA patients shows the diversity of genes involved in non-5q SMA in Iranians. Genotyping of patients with SMA is essential for prenatal and preimplantation genetic diagnosis (PGD), and may be very helpful for guiding treatment, with the advent of new, more effective, albeit very expensive, therapies. Also, combining linkage analysis was shown to be beneficial in many ways, including sample authenticity and segregation analysis, and for ruling out maternal cell contamination during prenatal diagnosis (PND).
Collapse
Affiliation(s)
- Zohreh Sharifi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Sadegh Fallah
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Maryam Abiri
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Golnabi
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Hamideh Bagherian
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Razieh Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Hossein Farahzadi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Alborji
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | | | - Masoume Amini
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Sadaf Asnavandi
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sirous Zeinali
- Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran. .,Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
24
|
Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics 2021; 22:53-64. [PMID: 33415588 DOI: 10.1007/s10048-020-00630-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutations of survival motor neuron 1 (SMN1) but retention of one or more copies of the paralog SMN2. Within the SMA population, there is substantial variation in SMN2 copy number (CN); in general, those individuals with SMA who have a high SMN2 CN have a milder disease. Because SMN2 functions as a disease modifier, its accurate CN determination may have clinical relevance. In this study, we describe the development of array digital PCR (dPCR) to quantify SMN1 and SMN2 CNs in DNA samples using probes that can distinguish the single nucleotide difference between SMN1 and SMN2 in exon 8. This set of dPCR assays can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 CN and disease severity. We can detect SMN1-SMN2 gene conversion events in DNA samples by comparing CNs at exon 7 and exon 8. Partial deletions of SMN1 can also be detected with dPCR by comparing CNs at exon 7 or exon 8 with those at intron 1. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 CNs from SMA samples as well as identify gene conversion events and partial deletions of SMN1.
Collapse
|
25
|
Dual Mechanism of a New SMN1 Variant (c.835G>C, p.Gly279Arg) by Interrupting Exon 7 Skipping and YG Oligomerization in Causation of Spinal Muscular Atrophy. J Mol Neurosci 2020; 71:112-121. [PMID: 32812185 DOI: 10.1007/s12031-020-01631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by deletion or subtle variant of survival motor neuron 1 (SMN1) gene. By multiplex ligation-dependent probe amplification, genomic sequencing, and T-A cloning on cDNA level, we identified one novel SMN1 subtle variant c.835G>C (p.Gly279Arg) in a non-homozygous patient with type 1 SMA. Full-length SMN1 (fl-SMN1) transcripts in the peripheral bloods of the patient were significantly decreased compared with those in healthy individuals and the carries (p < 0.05). And two fragments of SMN1 transcripts including fl-SMN1 and △7-SMN1 were observed by RT-PCR, which indicated Exon 7 skipping of SMN1 gene. To further evaluate its splicing effects on Exon 7, we performed ex vivo splicing analysis, which showed that the mutant mini gene with c.835G>C reduced Exon 7 inclusion to 54%. In addition, self-oligomerization between mutant SMN protein with the c.835G>C (p.Gly279Arg) and wild SMN was decreased in self-interaction assays. Our study clearly demonstrates that the c.835G>C (p.Gly279Arg) variant can lead to a decrease in fl-SMN1 transcripts by interrupting correct splicing of SMN1. What is more, the variant also affects SMN self-oligomerization via amino acid substitution from Gly to Arg at amino acid position of 279. This work presents the first evidence that it does exit double-hit events for the novel variant, which is crucial to understanding a severe SMA phenotype (type 1).
Collapse
|
26
|
Tan CA, Westbrook MJ, Truty R, Kvitek DJ, Kennemer M, Winder TL, Shieh PB. Incorporating Spinal Muscular Atrophy Analysis by Next-Generation Sequencing into a Comprehensive Multigene Panel for Neuromuscular Disorders. Genet Test Mol Biomarkers 2020; 24:616-624. [PMID: 32721234 DOI: 10.1089/gtmb.2019.0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is traditionally molecularly diagnosed by multiplex ligation-dependent probe amplification or quantitative polymerase chain reaction (qPCR). SMA analyses are not routinely incorporated into gene panel analyses for individuals with suspected SMA or broader neuromuscular indications. Aim: We sought to determine whether a next-generation sequencing (NGS) approach that integrates SMA analyses into a multigene neuromuscular disorders panel could detect undiagnosed SMA. Materials and Methods: Sequence and copy number variants of the SMN1/SMN2 genes were simultaneously analyzed in samples from 5304 unselected individuals referred for testing using an NGS-based 122-gene neuromuscular panel. This diagnostic approach was validated using DNA from 68 individuals who had been previously diagnosed with SMA via quantitative PCR for SMN1/SMN2. Results: Homozygous loss of SMN1 was detected in 47 unselected individuals. Heterozygous loss of SMN1 was detected in 118 individuals; 8 had an indeterminate variant in "SMN1 or SMN2" that supported an SMA diagnosis but required additional disambiguation. Of the remaining SMA carriers, 44 had pathogenic variants in other genes. Concordance rates between NGS and qPCR were 100% and 93% for SMN1 and SMN2 copy numbers, respectively. Where there was disagreement, phenotypes were more consistent with the SMN2 results from NGS. Conclusion: Integrating NGS-based SMA testing into a multigene neuromuscular panel allows a single assay to diagnose SMA while comprehensively assessing the spectrum of variants that can occur in individuals with broad differential diagnoses or nonspecific/overlapping neuromuscular features.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Perry B Shieh
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
27
|
Lomonte P, Baklouti F, Binda O. The Biochemistry of Survival Motor Neuron Protein Is Paving the Way to Novel Therapies for Spinal Muscle Atrophy. Biochemistry 2020; 59:1391-1397. [PMID: 32227847 DOI: 10.1021/acs.biochem.9b01124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal muscle atrophy (SMA) is the leading genetic cause of infant mortality. SMA originates from the loss of functional survival motor neuron (SMN) protein. In most SMA cases, the SMN1 gene is deleted. However, in some cases, SMN is mutated, impairing its biological functions. SMN mutants could provide clues about the biological functions of SMN and the specific impact on SMA, potentially leading to the identification of new pathways and thus providing novel treatment alternatives, and even personalized care. Here, we discuss the biochemistry of SMN and the most recent SMA treatment strategies.
Collapse
Affiliation(s)
- Patrick Lomonte
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), 69008 Lyon, France
| | - Faouzi Baklouti
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), 69008 Lyon, France
| | - Olivier Binda
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), 69008 Lyon, France
| |
Collapse
|
28
|
Zhang J, Wang Y, Ma D, Sun Y, Li Y, Yang P, Luo C, Jiang T, Hu P, Xu Z. Carrier Screening and Prenatal Diagnosis for Spinal Muscular Atrophy in 13,069 Chinese Pregnant Women. J Mol Diagn 2020; 22:817-822. [PMID: 32205292 DOI: 10.1016/j.jmoldx.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a relatively common, life-shortening, autosomal recessive neuromuscular disease. The carrier frequency of SMA ranges from approximately 0.98% to 2.02%, depending on ethnicity. The American College of Medical Genetics has therefore recommended population screening for SMA carrier status, regardless of race or ethnicity. We performed the largest-scale carrier screening for SMA carriers in mainland China. Carrier screening was offered to 36,470 pregnant women between July 2017 and June 2019, of whom 13,069 women accepted the screening program [35.83%; 95% credibility interval (CI), 35.34%-36.33%]. Copy numbers of exons 7 and 8 in the SMN1 gene were detected by real-time quantitative PCR, and the results were confirmed by multiplex ligation-dependent probe amplification. A total of 231 women were identified as carriers (1.77%; 95% CI, 1.56%-2.01%), indicating a carrier prevalence of approximately 1:56 in the population. After detailed genetic counseling, 207 paternal partners were recalled and tested. Both partners were carriers in 10 couples, of whom prenatal diagnosis was implemented in seven, and one fetus was diagnosed with SMA. Carrier screening could provide couples with informed reproductive choices. Our workflow and experience of carrier screening may facilitate the popularization of SMA carrier screening in mainland China.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuguo Wang
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yun Sun
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yahong Li
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Peiying Yang
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunyu Luo
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Tao Jiang
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ping Hu
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
29
|
Xu Y, Xiao B, Liu Y, Qu XX, Dai MY, Ying XM, Jiang WT, Zhang JM, Liu XQ, Chen YW, Ji X. Identification of novel SMN1 subtle mutations using an allelic-specific RT-PCR. Neuromuscul Disord 2019; 30:219-226. [PMID: 32169315 DOI: 10.1016/j.nmd.2019.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
Abstract
Spinal muscular atrophy (SMA) is caused by homozygous deletions of the SMN1 gene in approximately 95% of patients. The remaining 5% of patients with SMA retain at least one copy of the SMN1 gene carrying insertions, deletions, or point mutations. Although molecular genetic testing for most SMA patients is quite easy, diagnosing "nondeletion" SMA patients is still compromised by the presence of a highly homologous SMN2 gene. In this study, we analyzed the SMN1/SMN2 copy number by quantitative PCR and multiplex ligation-dependent probe amplification (MLPA). Further, common primers for both SMN1 and SMN2 sequences were used to screen DNA intragenic mutations. To confirm whether the identified mutations occurred in SMN1 or SMN2, we improved the traditional RT-PCR method by only amplifying SMN1 transcripts using an allelic-specific PCR (AS-RT-PCR) strategy. We identified six SMN1 point mutations and small indels in 8 families, which included c.683T>A, c.22dupA, c.815A>G, c.19delG, c.551_552insA and c.401_402delAG. To the best of our knowledge, the latter three have never been previously reported. The most common mutation in Chinese patients is c.22dupA, which was identified in three families. In this work, we demonstrated AS-RT-PCR to be reliable for identifying SMN1 subtle mutations, especially the prevalent mutation c.22dupA in Chinese SMA patients. By reviewing published papers and summarizing reported SMN1 mutations, a distinct ethnic specificity was found in SMA patients from China. Our research extends the SMN1 mutation spectrum.
Collapse
Affiliation(s)
- Yan Xu
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Bing Xiao
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yu Liu
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Xiao-Xing Qu
- Department of Fetal Medicine Center, Shanghai First Maternity and Infant Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| | - Meng-Yao Dai
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Xiao-Min Ying
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wen-Ting Jiang
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jing-Min Zhang
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Xiao-Qing Liu
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Endocrinology and Genetics, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying-Wei Chen
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xing Ji
- Department of Genetic Counseling, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
30
|
Cao YY, Zhang WH, Qu YJ, Bai JL, Jin YW, Wang H, Song F. Diagnosis of Spinal Muscular Atrophy: A Simple Method for Quantifying the Relative Amount of Survival Motor Neuron Gene 1/2 Using Sanger DNA Sequencing. Chin Med J (Engl) 2019; 131:2921-2929. [PMID: 30539904 PMCID: PMC6302647 DOI: 10.4103/0366-6999.247198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is caused by homozygous deletion or compound heterozygous mutation of survival motor neuron gene 1 (SMN1), which is the key to diagnose SMA. The study was to establish and evaluate a new diagnostic method for SMA. Methods: A total of 1494 children suspected with SMA were enrolled in this study. Traditional strategy, including multiplexed ligation-dependent probe amplification (MLPA) and TA cloning, was used in 1364 suspected SMA children from 2003 to 2014, and the 130 suspected SMA children were tested by a new strategy from 2015 to 2016, who were also verified by MLPA combined with TA cloning. The SMN1 and SMN2 were simultaneously amplified by polymerase chain reaction using the same primers. Mutation Surveyor software was used to detect and quantify the SMN1 variants by calculating allelic proportions in Sanger sequencing. Finally, turnaround time and cost of these two strategies were compared. Results: Among 1364 suspected SMA children, 576 children had SMN1 homozygous deletion and 27 children had SMN1 compound heterozygous mutation. Among the 130 cases, 59 had SMN1 homozygous deletion and 8 had heterozygous deletion: the SMN1-specific peak proportion on exon 7 was 34.6 ± 1.0% and 25.5 ± 0.5%, representing SMN1:SMN2 to be 1:2 and 1:3, respectively. Moreover, five variations, including p.Ser8Lysfs *23 (in two cases), p.Leu228*, p.Pro218Hisfs *26, p.Ser143Phefs*5, and p.Tyr276His, were detected in 6/8 cases with heterozygous deletion, the mutant allele proportion was 31.9%, 23.9%, 37.6%, 32.8%, 24.5%, and 23.6%, which was similar to that of the SMN1-specific site on exon 7, suggesting that those subtle mutations were located in SMN1. All these results were consistent with MLPA and TA cloning. The turnaround times of two strategies were 7.5 h and 266.5 h, respectively. Cost of a new strategy was only 28.5% of the traditional strategy. Conclusion: Sanger sequencing combined with Mutation Surveyor analysis has potential application in SMA diagnosis.
Collapse
Affiliation(s)
- Yan-Yan Cao
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Wen-Hui Zhang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yu-Jin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jin-Li Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yu-Wei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
31
|
Sneha P, Zenith TU, Abu Habib US, Evangeline J, Thirumal Kumar D, George Priya Doss C, Siva R, Zayed H. Impact of missense mutations in survival motor neuron protein (SMN1) leading to Spinal Muscular Atrophy (SMA): A computational approach. Metab Brain Dis 2018; 33:1823-1834. [PMID: 30006696 DOI: 10.1007/s11011-018-0285-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by the mutations in survival motor neuron 1 gene (SMN1). The molecular pathology of missense mutations in SMN1 is not thoroughly investigated so far. Therefore, we collected all missense mutations in the SMN1 protein, using all possible search terms, from three databases (PubMed, PMC and Google Scholar). All missense mutations were subjected to in silico pathogenicity, conservation, and stability analysis tools. We used statistical analysis as a QC measure for validating the specificity and accuracy of these tools. PolyPhen-2 demonstrated the highest specificity and accuracy. While PolyPhen-1 showed the highest sensitivity; overall, PolyPhen2 showed better measures in comparison to other in silico tools. Three mutations (D44V, Y272C, and Y277C) were identified as the most pathogenic and destabilizing. Further, we compared the physiochemical properties of the native and the mutant amino acids and observed loss of H-bonds and aromatic stacking upon the cysteine to tyrosine substitution, which led to the loss of aromatic rings and may reduce protein stability. The three mutations were further subjected to Molecular Dynamics Simulation (MDS) analysis using GROMACS to understand the structural changes. The Y272C and Y277C mutants exhibited maximum deviation pattern from the native protein as compared to D44V mutant. Further MDS analysis predicted changes in the stability that may have been contributed due to the loss of hydrogen bonds as observed in intramolecular hydrogen bond analysis and physiochemical analysis. A loss of function/structural impact was found to be severe in the case of Y272C and Y277C mutants in comparison to D44V mutation. Correlating the results from in silico predictions, physiochemical analysis, and MDS, we were able to observe a loss of stability in all the three mutants. This combinatorial approach could serve as a platform for variant interpretation and drug design for spinal muscular dystrophy resulting from missense mutations.
Collapse
Affiliation(s)
- P Sneha
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Tanzila U Zenith
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | - Ummay Salma Abu Habib
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | - Judith Evangeline
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - D Thirumal Kumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - R Siva
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hatem Zayed
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
32
|
Wu S, Li YL, Cheng NY, Wang C, Dong EL, Lu YQ, Li JJ, Guo XX, Lin X, Lai LL, Liu ZW, Wang N, Chen WJ. c.835-5T>G Variant in SMN1 Gene Causes Transcript Exclusion of Exon 7 and Spinal Muscular Atrophy. J Mol Neurosci 2018; 65:196-202. [PMID: 29799103 DOI: 10.1007/s12031-018-1079-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder caused by survival motor neuron (SMN) protein deficiency leading the loss of motor neurons in the anterior horns of the spinal cord and brainstem. More than 95% of SMA patients are attributed to the homozygous deletion of survival motor neuron 1 (SMN1) gene, and approximately 5% are caused by compound heterozygous with a SMN1 deletion and a subtle mutation. Here, we identified a rare variant c.835-5T>G in intron 6 of SMN1 in a patient affected with type I SMA. We analyzed the functional consequences of this mutation on mRNA splicing in vitro. After transfecting pCI-SMN1, pCI-SMN2, and pCI-SMN1 c.835-5T>G minigenes into HEK293, Neuro-2a, and SHSY5Y cells, reverse transcription polymerase chain reaction (RT-PCR) was performed to compare the splicing effects of these minigenes. Finally, we found that this mutation resulted in the skipping of exon 7 in SMN1, which confirmed the genetic diagnosis of SMA.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yun-Lu Li
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning-Yi Cheng
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chong Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ying-Qian Lu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Jing Li
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Xin Guo
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Lu-Lu Lai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhi-Wei Liu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China. .,Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China.
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China. .,Fujian Key Laboratory of Molecular Neurology, Fuzhou, 350005, China.
| |
Collapse
|
33
|
Qu YJ, Ge L, Bai JL, Cao YY, Jin YW, Wang H, Yang L, Song F. p.Val19Glyfs*21 and p.Leu228* variants in the survival of motor neuron 1 trigger nonsense-mediated mRNA decay causing the SMN1 PTC+ transcripts degradation. Mutat Res 2017; 806:31-38. [PMID: 28950212 DOI: 10.1016/j.mrfmmm.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Spinal Muscular Atrophy (SMA) results from loss-of-function mutations in the survival of motor neuron 1 (SMN1) gene. Our previous research showed that 40% of variants were nonsense or frameshift variants and SMN1 mRNA levels in the patients carrying these variants were significantly decreased. Here we selected one rare variant (p.Val19Glyfs*21) and one common variant (p.Leu228*) to explore the degradation mechanism of mutant transcripts. The levels of full-length (FL)-SMN1 transcripts and SMN protein in the cell lines from the patients with these variants were both significantly reduced (p<0.01). Treatment with two translation inhibitors (puromycin and Cycloheximide (CHX)) markedly increased the levels of FL-SMN1 transcripts with premature translation termination codons (PTCs) (p<0.01) and showed time-dependent (10h>5.5h) but not dose-dependent effects. Moreover, the knockdown of UPF1, a key factor in nonsense-mediated mRNA decay (NMD) by lentivirus, led to a 3.1-fold increase (p<0.01) in FL-SMN1 transcript levels in patient fibroblasts. Our research provides evidence that these two PTC-generating variants (p.Val19Glyfs*21 and p.Leu228*) can trigger NMD, causing rapid degradation of SMN1 transcripts thereby resulting in SMN protein deficiency. These two variants are highly pathogenic and are associated with more severe SMA phenotypes. Varying NMD efficiency after treatment with puromycin and CHX in different cell types was also observed.
Collapse
Affiliation(s)
- Yu-Jin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lin Ge
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jin-Li Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Yan-Yan Cao
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Yu-Wei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lan Yang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
34
|
Bai J, Qu Y, Cao Y, Yang L, Ge L, Jin Y, Wang H, Song F. The SMN1 common variant c.22 dupA in Chinese patients causes spinal muscular atrophy by nonsense-mediated mRNA decay in humans. Gene 2017; 644:49-55. [PMID: 29080838 DOI: 10.1016/j.gene.2017.10.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/28/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022]
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is mostly caused by homozygous deletion of the SMN1 gene. Approximately 5%-10% of SMA patients are believed to have SMN1 variants. c.22 dupA (p.Ser8lysfs*23) has been identified as the most frequent variant in the Chinese SMA population and to be associated with a severe phenotype. However, the exact molecular mechanism of the variant on the pathogenesis of SMA is unclear. We observed that SMN1 mRNA and the SMN protein in the peripheral blood cells of a patient with c.22 dupA were lower than those of controls. The aim of this study is to investigate whether nonsense-mediated mRNA decay (NMD) plays a role in the mechanism of the c.22 dupA variant of the SMN1 gene as it causes SMA. Two lymphoblasts cell lines from two patients (patient 1 and 2) with the c.22 dupA, and one dermal fibroblasts cell line from patient 2 were included in our study. Two-stage validation of the NMD mechanism was supplied. We first measured the changes in the transcript levels of the SMN1 gene by real-time quantitative PCR after immortalized B-lymphoblasts and dermal fibroblasts cells of the SMA patients were treated with inhibitors of the NMD pathway, including puromycin and cyclohemide. Next, lentivirus-mediated knockdown of the key NMD factor-Up-frameshift protein 1 (UPF1)-was performed in the fibroblasts cell line to further clarify whether the variant led to NMD, as UPF1 recognizes abnormally terminated transcripts as NMD substrates during translation. SC35 1.7-kb transcripts, a physiological NMD substrate was determined to be a NMD positive gene in our experiments. The two inhibitors resulted in a dramatic escalation of the levels of the full-length SMN1 (fl-SMN1) transcripts. Additionally, the SC35 1.7-kb mRNA levels were also increased, suggesting that NMD pathway is suppressed by the two inhibitors. For the 3 cell lines, the fold increase of the SMN1 transcript levels of cycloheximide ranged from 2.5±0.4 to 8.3±0.1, 1.9±0.2 to 5.0±0.7 and 2.2±0.1 to 4.9±0.2 for two lymphoblastoid cell lines and one fibroblasts cell line, respectively. For these cell lines, the fold increases of the SMN1 transcript levels of puromycin were as follows: 5.5±0.2 to 19.5±4.0, 3.1±0.3 to 9.9±1.8 and 1.5±0.2 to 6.5±0.5. Meanwhile, the SC35 1.7-kb transcript levels were markedly increased in all 3 cell lines. In addition, lentivirus-mediated UPF1 knockdown lead to a reduction of the UPF1 protein level to 22.5% compared to the negative control lentivirus. Additionally, knockdown of the UPF1 gene also promoted mRNA expression of the SC35 1.7kb and fl-SMN1 genes. The increases of the SMN1 and SC35 1.7-kb mRNA levels reached about 4- and 6.5-fold in fibroblasts derived from the patient 2, respectively. Altogether, our study provides the first evidence that the c.22 dupA variant in the SMN1 gene triggers NMD. SMA pathogenesis in the patient is associated with mRNA degradation of SMN1, but not the truncated SMN protein.
Collapse
Affiliation(s)
- JinLi Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - YuJin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - YanYan Cao
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lan Yang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Ge
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - YuWei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|