1
|
Hou F, Mao A, Shan S, Li Y, Meng W, Zhan J, Nie W, Jin H. Evaluating the clinical utility of a long-read sequencing-based approach in genetic testing of fragile-X syndrome. Clin Chim Acta 2023; 551:117614. [PMID: 38375623 DOI: 10.1016/j.cca.2023.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Fragile X syndrome (FXS) arises from the FMR1 CGG expansion. Comprehensive genetic testing for FMR1 CGG expansions, AGG interruptions, and microdeletions is essential to provide genetic counseling for females carrying premutation alleles. However, conventional PCR-based FMR1 assays mainly focus on CGG repeats, and could detect AGG interruption only in males. METHODS The clinical utility of a long-read sequencing-based assay termed comprehensive analysis of FXS (CAFXS) was evaluated in 238 high-risk samples by comparing to conventional PCR assays. RESULTS PCR assays identified five premuation and three full mutation categories alleles in all the samples, and CAFXS successfully called all the FMR1 CGG expansion. CAFXS identified 24-bp microdeletions upstream to the trinucleotide region with 30 CGG repeats, which was miscalled by the length-based PCR methods. CAFXS also identified a 187-bp deletion in about 1/7 of the sequencing reads in a male patient with mosaic full mutation alleles. CAFXS allowed for precise constructing the FMR1 CGG repeat and AGG interruption pattern in all the samples, and identified a novel and alternative CGA interruption in one normal female sample. CONCLUSIONS CAFXS represents a more comprehensive and accurate approach for FXS genetic testing that potentially enables more informed genetic counseling compared to PCR-based methods.
Collapse
Affiliation(s)
- Fei Hou
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing 102200, China
| | - Shan Shan
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Yan Li
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing 102200, China
| | - Jiahan Zhan
- Berry Genomics Corporation, Beijing 102200, China
| | - Wenying Nie
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Hua Jin
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China.
| |
Collapse
|
2
|
Liang Q, Liu Y, Liu Y, Duan R, Meng W, Zhan J, Xia J, Mao A, Liang D, Wu L. Comprehensive Analysis of Fragile X Syndrome: Full Characterization of the FMR1 Locus by Long-Read Sequencing. Clin Chem 2022; 68:1529-1540. [PMID: 36171182 DOI: 10.1093/clinchem/hvac154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most frequent cause of inherited X-linked intellectual disability. Conventional FXS genetic testing methods mainly focus on FMR1 CGG expansions and fail to identify AGG interruptions, rare intragenic variants, and large gene deletions. METHODS A long-range PCR and long-read sequencing-based assay termed comprehensive analysis of FXS (CAFXS) was developed and evaluated in Coriell and clinical samples by comparing to Southern blot analysis and triplet repeat-primed PCR (TP-PCR). RESULTS CAFXS accurately detected the number of CGG repeats in the range of 93 to at least 940 with mass fraction of 0.5% to 1% in the background of normal alleles, which was 2-4-fold analytically more sensitive than TP-PCR. All categories of mutations detected by control methods, including full mutations in 30 samples, were identified by CAFXS for all 62 clinical samples. CAFXS accurately determined AGG interruptions in all 133 alleles identified, even in mosaic alleles. CAFXS successfully identified 2 rare intragenic variants including the c.879A > C variant in exon 9 and a 697-bp microdeletion flanking upstream of CGG repeats, which disrupted primer annealing in TP-PCR assay. In addition, CAFXS directly determined the breakpoints of a 237.1-kb deletion and a 774.0-kb deletion encompassing the entire FMR1 gene in 2 samples. CONCLUSIONS Long-read sequencing-based CAFXS represents a comprehensive assay for identifying FMR1 CGG expansions, AGG interruptions, rare intragenic variants, and large gene deletions, which greatly improves the genetic screening and diagnosis for FXS.
Collapse
Affiliation(s)
- Qiaowei Liang
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Yingdi Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaning Liu
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing, China
| | | | - Jiahui Xia
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, China
| | - Desheng Liang
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lingqian Wu
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Chiara M, Zambelli F, Picardi E, Horner DS, Pesole G. Critical assessment of bioinformatics methods for the characterization of pathological repeat expansions with single-molecule sequencing data. Brief Bioinform 2019; 21:1971-1986. [DOI: 10.1093/bib/bbz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 01/19/2023] Open
Abstract
Abstract
A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
4
|
Hayward B, Loutaev I, Ding X, Nolin SL, Thurm A, Usdin K, Smith CB. Fragile X syndrome in a male with methylated premutation alleles and no detectable methylated full mutation alleles. Am J Med Genet A 2019; 179:2132-2137. [DOI: 10.1002/ajmg.a.61286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Bruce Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health Bethesda Maryland
| | - Inna Loutaev
- Section on Neuroadaptation and Protein MetabolismNational Institute of Mental Health, National Institutes of Health Bethesda Maryland
| | - Xiaohua Ding
- Molecular Diagnostic LaboratoryNew York State Institute for Basic Research in Developmental Disabilities Staten Island New York
| | - Sarah L. Nolin
- Molecular Diagnostic LaboratoryNew York State Institute for Basic Research in Developmental Disabilities Staten Island New York
| | - Audrey Thurm
- Office of the Clinical DirectorNational Institute of Mental Health, National Institutes of Health Bethesda Maryland
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health Bethesda Maryland
| | - Carolyn B. Smith
- Section on Neuroadaptation and Protein MetabolismNational Institute of Mental Health, National Institutes of Health Bethesda Maryland
| |
Collapse
|
5
|
Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2019; 46:2159-2168. [PMID: 29401301 PMCID: PMC5861413 DOI: 10.1093/nar/gky066] [Citation(s) in RCA: 409] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio's single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.
Collapse
Affiliation(s)
- Simon Ardui
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala 75108, Sweden.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | | | - Matthew S Hestand
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium.,Department of Clinical Genetics, VU University Medical Center, Amsterdam 1081 BT, The Netherlands
| |
Collapse
|
6
|
Ardui S, Race V, de Ravel T, Van Esch H, Devriendt K, Matthijs G, Vermeesch JR. Detecting AGG Interruptions in Females With a FMR1 Premutation by Long-Read Single-Molecule Sequencing: A 1 Year Clinical Experience. Front Genet 2018; 9:150. [PMID: 29868108 PMCID: PMC5964127 DOI: 10.3389/fgene.2018.00150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022] Open
Abstract
The fragile X syndrome arises from the FMR1 CGG expansion of a premutation (55–200 repeats) to a full mutation allele (>200 repeats) and is the most frequent cause of inherited X-linked intellectual disability. The risk for a premutation to expand to a full mutation allele depends on the repeat length and AGG triplets interrupting this repeat. In genetic counseling it is important to have information on both these parameters to provide an accurate risk estimate to women carrying a premutation allele and weighing up having children. For example, in case of a small risk a woman might opt for a natural pregnancy followed up by prenatal diagnosis while she might choose for preimplantation genetic diagnosis (PGD) if the risk is high. Unfortunately, the detection of AGG interruptions was previously hampered by technical difficulties complicating their use in diagnostics. Therefore we recently developed, validated and implemented a new methodology which uses long-read single-molecule sequencing to identify AGG interruptions in females with a FMR1 premutation. Here we report on the assets of AGG interruption detection by sequencing and the impact of implementing the assay on genetic counseling.
Collapse
Affiliation(s)
- Simon Ardui
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Valerie Race
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Gert Matthijs
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Wotton T, Wiley V, Bennetts B, Christie L, Wilcken B, Jenkins G, Rogers C, Boyle J, Field M. Are We Ready for Fragile X Newborn Screening Testing?-Lessons Learnt from a Feasibility Study. Int J Neonatal Screen 2018; 4:9. [PMID: 33072935 PMCID: PMC7548904 DOI: 10.3390/ijns4010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent heritable cause of cognitive impairment but is not yet included in a newborn screening (NBS) program within Australia. This paper aims to assess the feasibility and reliability of population screening for FXS using a pilot study in one hospital. A total of 1971 mothers consented for 2000 newborns to be tested using routine NBS dried blood spot samples. DNA was extracted and a modified PCR assay with a chimeric CGG primer was used to detect fragile X alleles in both males and females in the normal, premutation, and full mutation ranges. A routine PCR-based fragile X assay was run in parallel to validate the chimeric primer assay. Babies with CGG repeat number ≥59 were referred for family studies. One thousand nine hundred and ninety NBS samples had a CGG repeat number less than 55 (1986 < 50); 10 had premutation alleles >54 CGG repeats (1/123 females and 1/507 males). There was complete concordance between the two PCR-based assays. A recent review revealed no clinically identified cases in the cohort up to 5 years later. The cost per test was $AUD19. Fragile X status can be determined on routine NBS samples using the chimeric primer assay. However, whilst this assay may not be considered cost-effective for population screening, it could be considered as a second-tier assay to a developed immunoassay for fragile X mental retardation protein (FMRP).
Collapse
Affiliation(s)
- Tiffany Wotton
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Correspondence:
| | - Veronica Wiley
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bruce Bennetts
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Genome Diagnostics—Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Louise Christie
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Bridget Wilcken
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma Jenkins
- Sydney Genome Diagnostics—Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Jackie Boyle
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Michael Field
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| |
Collapse
|
8
|
Hayward BE, Kumari D, Usdin K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017; 136:1313-1327. [PMID: 28866801 DOI: 10.1007/s00439-017-1840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
Abstract
The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA.
| |
Collapse
|