1
|
Neugebauer M, Calabrese S, Müller S, Truong TT, Juelg P, Borst N, Hutzenlaub T, Dazert E, von Bubnoff NCC, von Stetten F, Lehnert M. Generic Reporter Sets for Colorimetric Multiplex dPCR Demonstrated with 6-Plex SNP Quantification Panels. Int J Mol Sci 2024; 25:8968. [PMID: 39201654 PMCID: PMC11355019 DOI: 10.3390/ijms25168968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Digital PCR (dPCR) is a powerful method for highly sensitive and precise quantification of nucleic acids. However, designing and optimizing new multiplex dPCR assays using target sequence specific probes remains cumbersome, since fluorescent signals must be optimized for every new target panel. As a solution, we established a generic fluorogenic 6-plex reporter set, based on mediator probe technology, that decouples target detection from signal generation. This generic reporter set is compatible with different target panels and thus provides already optimized fluorescence signals from the start of new assay development. Generic reporters showed high population separability in a colorimetric 6-plex mediator probe dPCR, due to their tailored fluorophore and quencher selection. These reporters were further tested using different KRAS, NRAS and BRAF single-nucleotide polymorphisms (SNP), which are frequent point mutation targets in liquid biopsy. We specifically quantified SNP targets in our multiplex approach down to 0.4 copies per microliter (cp/µL) reaction mix, equaling 10 copies per reaction, on a wild-type background of 400 cp/µL for each, equaling 0.1% variant allele frequencies. We also demonstrated the design of an alternative generic reporter set from scratch in order to give detailed step-by-step guidance on how to systematically establish and optimize novel generic reporter sets. Those generic reporter sets can be customized for various digital PCR platforms or target panels with different degrees of multiplexing.
Collapse
Affiliation(s)
- Maximilian Neugebauer
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Silvia Calabrese
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
| | - Sarah Müller
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
| | - Truong-Tu Truong
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nadine Borst
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Eva Dazert
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (E.D.); (N.C.C.v.B.)
| | - Nikolas Christian Cornelius von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (E.D.); (N.C.C.v.B.)
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
| |
Collapse
|
2
|
Wainman LM, Sathyanarayana SH, Lefferts JA. Applications of Digital Polymerase Chain Reaction (dPCR) in Molecular and Clinical Testing. J Appl Lab Med 2024; 9:124-137. [PMID: 38167753 DOI: 10.1093/jalm/jfad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Digital polymerase chain reaction (dPCR) is an accurate and sensitive molecular method that can be used in clinical diagnostic, prognostic, and predictive tests. The key component of the dPCR method is the partitioning of a single reaction into many thousands of droplets, nanochannels or other nano- or picoliter-sized reactions. This results in high enough sensitivity to detect rare nucleic acid targets and provides an absolute quantification of target sequences or alleles compared to other PCR-based methods. CONTENT An increasing number of dPCR platforms have been introduced commercially in recent years and more are being developed. These platforms differ in the method of partitioning, degree of automation, and multiplexing capabilities but all can be used in similar ways for sensitive and highly accurate quantification of a variety of nucleic acid targets. Currently, clinical applications of dPCR include oncology, microbiology and infectious disease, genetics, and prenatal/newborn screening. Commercially available tests for clinical applications are being developed for variants with diagnostic, prognostic, and therapeutic significance in specific disease types. SUMMARY The power of dPCR technology relies on the partitioning of the reactions and results in increased sensitivity and accuracy compared to qPCR. More recently, the sensitivity of dPCR has been applied to the detection of known variants in cell-free DNA and circulating tumor DNA. Future clinical applications of dPCR include liquid biopsy, treatment resistance detection, screening for minimal residual disease, and monitoring allograft engraftment in transplanted patients.
Collapse
Affiliation(s)
- Lauren M Wainman
- Laboratory for Clinical Genomics and Advanced Technology (CGAT), Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Shivaprasad H Sathyanarayana
- Laboratory for Clinical Genomics and Advanced Technology (CGAT), Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Joel A Lefferts
- Laboratory for Clinical Genomics and Advanced Technology (CGAT), Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
3
|
Kuvendjiska J, Müller F, Bronsert P, Timme-Bronsert S, Fichtner-Feigl S, Kulemann B. Circulating Epithelial Cells in Patients with Intraductal Papillary Mucinous Neoplasm of the Pancreas. Life (Basel) 2023; 13:1570. [PMID: 37511945 PMCID: PMC10381561 DOI: 10.3390/life13071570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is the most common pancreatic cyst and a precursor of pancreatic cancer (PDAC). Since PDAC has a devastatingly high mortality rate, the early diagnosis and treatment of any precursor lesion are rational. The safety of the existing guidelines on the clinical management of IPMN has been criticized due to unsatisfactory sensitivity and specificity, showing the need for further markers. Blood obtained from patients with IPMN was therefore subjected to size-based isolation of circulating epithelial cells (CECs). We isolated CECs and evaluated their cytological characteristics. Additionally, we compared Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in CECs and the primary IPMN tissue, since KRAS mutations are very typical for PDAC. Samples from 27 IPMN patients were analyzed. In 10 (37%) patients, CECs were isolated and showed a hybrid pattern of surface markers involving both epithelial and mesenchymal markers, suggesting a possible EMT process of the cells. Especially, patients with high-grade dysplasia in the main specimen were all CEC-positive. KRAS mutations were also present in CECs but less common than in IPMN tissue. The existence of CEC in IPMN patients offers additional blood-based research possibilities for IMPN biology.
Collapse
Affiliation(s)
- Jasmina Kuvendjiska
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of General and Visceral Surgery, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Felix Müller
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Peter Bronsert
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Tumorbank, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Sylvia Timme-Bronsert
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Tumorbank, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Stefan Fichtner-Feigl
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of General and Visceral Surgery, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Birte Kulemann
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of Surgery, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| |
Collapse
|
4
|
Schlenker F, Juelg P, Lüddecke J, Paust N, Zengerle R, Hutzenlaub T. Nanobead handling on a centrifugal microfluidic LabDisk for automated extraction of cell-free circulating DNA with high recovery rates. Analyst 2023; 148:932-941. [PMID: 36722841 DOI: 10.1039/d2an01820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
cfDNA is an emerging biomarker with promising uses for the monitoring of cancer or infectious disease diagnostics. This work demonstrates a new concept for an automated cfDNA extraction with nanobeads as the solid phase in a centrifugal microfluidic LabDisk. By using a combination of centrifugal and magnetic forces, we retain the nanobeads in one incubation chamber while sequentially adding, incubating and removing the sample and pre-stored buffers for extraction. As the recovery rate of the typically low concentration of cfDNA is of high importance to attain sufficient amounts for analysis, optimal beadhandling is paramount. The goal is that the cfDNA in the sample adsorbs to the solid phase completely during the binding step, is retained during washing and completely removed during elution. In this work, we improved beadhandling by optimizing the incubation chamber geometry and both frequency and temperature protocols, to maximize recovery rates. For characterization of the extraction performance, synthetic mutant DNA was spiked into human plasma samples. The LabDisk showed better reproducibility in DNA recovery rates with a standard deviation of ±13% compared to a manual approach using spin-columns (±17%) or nanobeads (±26%). The extraction of colorectal cancer samples with both the developed LabDisk and a robotic automation instrument resulted in comparable allele frequencies. Consequently, we present a highly attractive solution for an automated liquid biopsy cfDNA extraction in a small benchtop device.
Collapse
Affiliation(s)
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. .,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Jan Lüddecke
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. .,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. .,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. .,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. .,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Chai W, Hao W, Liu J, Han Z, Chang S, Cheng L, Sun M, Yan G, Liu Z, Liu Y, Zhang G, Xing L, Chen H, Liu P. Visualizing Cathepsin K-Cre Expression at the Single-Cell Level with GFP Reporters. JBMR Plus 2022; 7:e10706. [PMID: 36699636 PMCID: PMC9850439 DOI: 10.1002/jbm4.10706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The Cre/lox system is a fundamental tool for functional genomic studies, and a number of Cre lines have been generated to target genes of interest spatially and temporally in defined cells or tissues; this approach has greatly expanded our knowledge of gene functions. However, the limitations of this system have recently been recognized, and we must address the challenge of so-called nonspecific/off-target effects when a Cre line is utilized to investigate a gene of interest. For example, cathepsin K (Ctsk) has been used as a specific osteoclast marker, and Cre driven by its promoter is widely utilized for osteoclast investigations. However, Ctsk-Cre expression has recently been identified in other cell types, such as osteocytes, periosteal stem cells, and tenocytes. To better understand Ctsk-Cre expression and ensure appropriate use of this Cre line, we performed a comprehensive analysis of Ctsk-Cre expression at the single-cell level in major organs and tissues using two green fluorescent protein (GFP) reporters (ROSA nT-nG and ROSA tdT) and a tissue clearing technique in young and aging mice. The expression profile was further verified by immunofluorescence staining and droplet digital RT-PCR. The results demonstrate that Ctsk-Cre is expressed not only in osteoclasts but also at various levels in osteoblast lineage cells and other major organs/tissues, particularly in the brain, kidney, pancreas, and blood vessels. Furthermore, Ctsk-Cre expression increases markedly in the bone marrow, skeletal muscle, and intervertebral discs in aging mice. These data will be valuable for accurately interpreting data obtained from in vivo studies using Ctsk-Cre mice to avoid potentially misleading conclusions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wenhuan Chai
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Weiwei Hao
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Jintao Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Zhenglin Han
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Shiyu Chang
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Liben Cheng
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Mingxin Sun
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Guofang Yan
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Zemin Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Yin Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Guodong Zhang
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Li Xing
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Hongqian Chen
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| | - Peng Liu
- Laboratory of Bone & Adipose BiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
6
|
Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell 2022; 40:920-938. [PMID: 36055231 DOI: 10.1016/j.ccell.2022.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/22/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022]
Abstract
Next-generation DNA sequencing technology has dramatically advanced clinical oncology through the identification of therapeutic targets and molecular biomarkers, leading to the personalization of cancer treatment with significantly improved outcomes for many common and rare tumor entities. More recent developments in advanced tumor profiling now enable dissection of tumor molecular architecture and the functional phenotype at cellular and subcellular resolution. Clinical translation of high-resolution tumor profiling and integration of multi-omics data into precision treatment, however, pose significant challenges at the level of prospective validation and clinical implementation. In this review, we summarize the latest advances in multi-omics tumor profiling, focusing on spatial genomics and chromatin organization, spatial transcriptomics and proteomics, liquid biopsy, and ex vivo modeling of drug response. We analyze the current stages of translational validation of these technologies and discuss future perspectives for their integration into precision treatment.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
7
|
Schlenker F, Kipf E, Deuter M, Höffkes I, Lehnert M, Zengerle R, von Stetten F, Scherer F, Wehrle J, von Bubnoff N, Juelg P, Hutzenlaub T, Borst N. Stringent Base Specific and Optimization-Free Multiplex Mediator Probe ddPCR for the Quantification of Point Mutations in Circulating Tumor DNA. Cancers (Basel) 2021; 13:cancers13225742. [PMID: 34830896 PMCID: PMC8616434 DOI: 10.3390/cancers13225742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Cancer treatment strategies and their follow-up monitoring are changing to personalized therapies, based on molecular genetic information from the individual person. Liquid biopsy, where this molecular information is derived from body fluids such as blood, has the potential to provide a systemic fingerprint of cancer dynamics, and, compared to tissue biopsy, is much less invasive for the patient. We used the previously published mediator probe PCR technology for liquid biopsy detection of several mutations in one reaction, so-called digital multiplex PCR. Quantification of point mutations in plasma eluates from follow-up patients using 4-plex digital assays showed a comparable performance to reference 2-plex assays. As a key feature, the presented multiplex assays require no laborious optimization as they use the same concentrations and cycling conditions for all targets. This allows for flexible design and interchangeable target panels, thus the assay is easily adaptable for individual patient monitoring and reduces sample consumption. Abstract There is an increasing demand for optimization-free multiplex assays to rapidly establish comprehensive target panels for cancer monitoring by liquid biopsy. We present the mediator probe (MP) PCR for the quantification of the seven most frequent point mutations and corresponding wild types (KRAS and BRAF) in colorectal carcinoma. Standardized parameters for the digital assay were derived using design of experiments. Without further optimization, the limit of detection (LoD) was determined through spiking experiments with synthetic mutant DNA in human genomic DNA. The limit of blank (LoB) was measured in cfDNA plasma eluates from healthy volunteers. The 2-plex and 4-plex MP ddPCR assays showed a LoB of 0 copies/mL except for 4-plex KRAS G13D (9.82 copies/mL) and 4-plex BRAF V600E (16.29 copies/mL) and allele frequencies of 0.004% ≤ LoD ≤ 0.38% with R2 ≥ 0.98. The quantification of point mutations in patient plasma eluates (18 patients) during follow-up using the 4-plex MP ddPCR showed a comparable performance to the reference assays. The presented multiplex assays need no laborious optimization, as they use the same concentrations and cycling conditions for all targets. This facilitates assay certification, allows a fast and flexible design process, and is thus easily adaptable for individual patient monitoring.
Collapse
Affiliation(s)
- Franziska Schlenker
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Elena Kipf
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Max Deuter
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Inga Höffkes
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Julius Wehrle
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
- Department of Hematology and Oncology, Campus Lübeck, University Hospital Schleswig-Holstein, 23562 Lübeck, Germany
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nadine Borst
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-73208
| |
Collapse
|
8
|
Ferreira I, Slott S, Astakhova K, Weber G. Complete Mesoscopic Parameterization of Single LNA Modifications in DNA Applied to Oncogene Probe Design. J Chem Inf Model 2021; 61:3615-3624. [PMID: 34251211 DOI: 10.1021/acs.jcim.1c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of mesoscopic models to describe the thermodynamic properties of locked nucleic acid (LNA)-modified nucleotides can provide useful insights into their properties, such as hydrogen-bonding and stacking interactions. In addition, the mesoscopic parameters can be used to optimize LNA insertion in probes, to achieve accurate melting temperature predictions, and to obtain duplex opening profiles at the base-pair level. Here, we applied this type of model to parameterize a large set of melting temperatures for LNA-modified sequences, from published sources, covering all possible nearest-neighbor configurations. We have found a very large increase in Morse potentials, which indicates very strong hydrogen bonding as the main cause of improved LNA thermodynamic stability. LNA-modified adenine-thymine (AT) was found to have similar hydrogen bonding to unmodified cytosine-guanine (CG) base pairs, while for LNA CG, we found exceptionally large hydrogen bonding. In contrast, stacking interactions, which were thought to be behind the stability of LNA, were similar to unmodified DNA in most cases. We applied the new LNA parameters to the design of BRAF, KRAS, and EGFR oncogene variants by testing all possible LNA modifications. Selected sequences were then synthesized and had their hybridization temperatures measured, achieving a prediction accuracy within 1 °C. We performed a detailed base-pair opening analysis to discuss specific aspects of these probe hybridizations that may be relevant for probe design.
Collapse
Affiliation(s)
- Izabela Ferreira
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.,Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Sofie Slott
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Catalano A, Adlesic M, Kaltenbacher T, Klar RFU, Albers J, Seidel P, Brandt LP, Hejhal T, Busenhart P, Röhner N, Zodel K, Fritsch K, Wild PJ, Duyster J, Fritsch R, Brummer T, Frew IJ. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel) 2021; 13:cancers13081852. [PMID: 33924486 PMCID: PMC8069437 DOI: 10.3390/cancers13081852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Mutations in RAS-family genes frequently cause different types of human cancers. Inhibitors of the MEK (mitogen-activated protein kinase) and ERK (extracellular signal-regulated kinase) protein kinases that function downstream of RAS proteins have shown some clinical benefits when used for the treatment of these cancers, but drug resistance frequently emerges. Here we show that combined treatment with MEK and ERK inhibitors blocks the emergence of resistance to either drug alone. However, if cancer cells have already developed resistance to MEK inhibitors or to ERK inhibitors, the combined therapy is frequently ineffective. These findings imply that these inhibitors should be used together for cancer therapy. We also show that drug resistance involves complex patterns of rewiring of cellular kinase signaling networks that do not overlap between each different cancer cell line. Nonetheless, we show that MAP4K4 is required for efficient cell proliferation in several different MEK/ERK inhibitor resistant cancer cell lines, uncovering a potential new therapeutic target. Abstract Oncogenic mutations in RAS family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic HrasG12V-driven undifferentiated pleomorphic sarcoma metastasis and of KrasG12D-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells and of human oncogenic KRAS-, NRAS- and BRAF-driven cancer cell lines we identified that resistance to single MEK inhibitor and ERK inhibitor treatments arise rapidly but combination therapy completely blocks the emergence of resistance. The prior evolution of resistance to either single agent frequently leads to resistance to dual treatment. Dual MEK inhibitor plus ERK inhibitor therapy shows anti-tumor efficacy in an HrasG12V-driven autochthonous sarcoma model but features of drug resistance in vivo were also evident. Array-based kinome activity profiling revealed an absence of common patterns of signaling rewiring in single or double MEK and ERK inhibitor resistant cells, showing that the development of resistance to downstream signaling inhibition in oncogenic RAS-driven tumors represents a heterogeneous process. Nonetheless, in some single and double MEK and ERK inhibitor resistant cell lines we identified newly acquired drug sensitivities. These may represent additional therapeutic targets in oncogenic RAS-driven tumors and provide general proof-of-principle that therapeutic vulnerabilities of drug resistant cells can be identified.
Collapse
Affiliation(s)
- Antonella Catalano
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Mojca Adlesic
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Thorsten Kaltenbacher
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Rhena F. U. Klar
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Joachim Albers
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Philipp Seidel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Laura P. Brandt
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Tomas Hejhal
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Philipp Busenhart
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Niklas Röhner
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
| | - Kyra Zodel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Kornelia Fritsch
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
| | - Peter J. Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Justus Duyster
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ralph Fritsch
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Hematology and Medical Oncology, University Hospital of Zurich, 8006 Zurich, Switzerland
| | - Tilman Brummer
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ian J. Frew
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-71831
| |
Collapse
|
10
|
Huerta M, Roselló S, Sabater L, Ferrer A, Tarazona N, Roda D, Gambardella V, Alfaro-Cervelló C, Garcés-Albir M, Cervantes A, Ibarrola-Villava M. Circulating Tumor DNA Detection by Digital-Droplet PCR in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13050994. [PMID: 33673558 PMCID: PMC7956845 DOI: 10.3390/cancers13050994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer is a digestive tumor that is most difficult to treat and carries one of the worst prognoses. The anatomical location of the pancreas makes it very difficult to obtain enough tumor material to establish a molecular diagnosis, so knowing the biology of this tumor and implementing new targeted-therapies is still a pending issue. The use of liquid biopsy, a blood sample test to detect circulating-tumor DNA fragments (ctDNA), is key to overcoming this difficulty and improving the evolution of this tumor. Liquid biopsies are equally representative of the tissue from which they come and allow relevant molecular and diagnostic information to be obtained in a faster and less invasive way. One challenge related to ctDNA is the lack of consistency in the study design. Moreover, ctDNA accounts for only a small percentage of the total cell-free circulating DNA and prior knowledge about particular mutations is usually required. Thus, our aim was to understand the current role and future perspectives of ctDNA in pancreatic cancer using digital-droplet PCR technology. Abstract Pancreatic cancer (PC) is one of the most devastating malignant tumors, being the seventh leading cause of cancer-related death worldwide. Researchers and clinicians are endeavoring to develop strategies for the early detection of the disease and the improvement of treatment results. Adequate biopsy is still challenging because of the pancreas’s poor anatomic location. Recently, circulating tumor DNA (ctDNA) could be identified as a liquid biopsy tool with huge potential as a non-invasive biomarker in early diagnosis, prognosis and management of PC. ctDNA is released from apoptotic and necrotic cancer cells, as well as from living tumor cells and even circulating tumor cells, and it can reveal genetic and epigenetic alterations with tumor-specific and individual mutation and methylation profiles. However, ctDNA sensibility remains a limitation and the accuracy of ctDNA as a biomarker for PC is relatively low and cannot be currently used as a screening or diagnostic tool. Increasing evidence suggests that ctDNA is an interesting biomarker for predictive or prognosis studies, evaluating minimal residual disease, longitudinal follow-up and treatment management. Promising results have been published and therefore the objective of our review is to understand the current role and the future perspectives of ctDNA in PC.
Collapse
Affiliation(s)
- Marisol Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
| | - Susana Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Department of Surgery, Hospital Clínico Universitario of Valencia, University of Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (L.S.); (M.G.-A.)
| | - Ana Ferrer
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Desamparados Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Valentina Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Clara Alfaro-Cervelló
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain;
| | - Marina Garcés-Albir
- Liver, Biliary and Pancreatic Unit, Department of Surgery, Hospital Clínico Universitario of Valencia, University of Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (L.S.); (M.G.-A.)
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-862-894
| |
Collapse
|
11
|
Hussung S, Akhoundova D, Hipp J, Follo M, Klar RFU, Philipp U, Scherer F, von Bubnoff N, Duyster J, Boerries M, Wittel U, Fritsch RM. Longitudinal analysis of cell-free mutated KRAS and CA 19-9 predicts survival following curative resection of pancreatic cancer. BMC Cancer 2021; 21:49. [PMID: 33430810 PMCID: PMC7802224 DOI: 10.1186/s12885-020-07736-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Novel biomarkers and molecular monitoring tools hold potential to improve outcome for patients following resection of pancreatic ductal adenocarcinoma (PDAC). We hypothesized that the combined longitudinal analysis of mutated cell-free plasma KRAS (cfKRASmut) and CA 19–9 during adjuvant treatment and follow-up might more accurately predict disease course than hitherto available parameters. Methods Between 07/2015 and 10/2018, we collected 134 plasma samples from 25 patients after R0/R1-resection of PDAC during adjuvant chemotherapy and post-treatment surveillance at our institution. Highly sensitive discriminatory multi-target ddPCR assays were employed to screen plasma samples for cfKRASmut. cfKRASmut and CA 19–9 dynamics were correlated with recurrence-free survival (RFS) and overall survival (OS). Patients were followed-up until 01/2020. Results Out of 25 enrolled patients, 76% had undergone R0 resection and 48% of resected PDACs were pN0. 17/25 (68%) of patients underwent adjuvant chemotherapy. Median follow-up was 22.0 months, with 19 out of 25 (76%) patients relapsing during study period. Median RFS was 10.0 months, median OS was 22.0 months. Out of clinicopathologic variables, only postoperative CA 19–9 levels and administration of adjuvant chemotherapy correlated with survival endpoints. cfKRASmut. was detected in 12/25 (48%) of patients, and detection of high levels inversely correlated with survival endpoint. Integration of cfKRASmut and CA 19–9 levels outperformed either individual marker. cfKRASmut outperformed CA 19–9 as dynamic marker since increase during adjuvant chemotherapy and follow-up was highly predictive of early relapse and poor OS. Conclusions Integrated analysis of cfKRASmut and CA 19–9 levels is a promising approach for molecular monitoring of patients following resection of PDAC. Larger prospective studies are needed to further develop this approach and dissect each marker’s specific potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07736-x.
Collapse
Affiliation(s)
- Saskia Hussung
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany.,Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Dilara Akhoundova
- Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland
| | - Julian Hipp
- Department of Surgery, Freiburg University Medical Center, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Rhena F U Klar
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Ulrike Philipp
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Wittel
- Department of Surgery, Freiburg University Medical Center, Freiburg, Germany
| | - Ralph M Fritsch
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Freiburg University Medical Center, Freiburg, Germany. .,Department of Medical Oncology and Hematology, Zurich University Hospital, Raemistrasse 100, 8091, Zürich, Switzerland. .,Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Zeng N, Guo Y, Xiang J. A Pterin-FAM-TAMRA Tri-color Fluorescence Biosensor to Detect the Level of KRAS Point Mutation. ANAL SCI 2020; 36:1529-1533. [PMID: 32830162 DOI: 10.2116/analsci.20p265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monitoring the changes in the level of KRAS point mutation (the concentration fraction of the KRAS point mutated DNA to the total DNA) in clinical treatment progress can guide and greatly improve the personalized therapy and therapeutic evaluation of patients with cancer. In this work, based on FRET fluorescence quenching and apyrimidinic site-induced guanine/pterin specific binding, we developed a pterin-FAM-TAMRA tri-color fluorescence sensing system to assess the level of KRAS point mutation in one step. The responses from TAMRA displayed good and similar linear correlations in the range from 60 nM to 2 μM for all four types of DNA, resulting in a common linear equation related to the T-DNA concentration (NΔFTAMRA = 2.908cT-DNA + 0.364). Meanwhile, the responses from pterin showed excellent selectivity to W-DNA and an excellent linear correlation to the W-DNA in the concentration range from 60 nM to 1 μM (NΔFpterin = -0.364cgDNA-G + 0.034). This biosensor has an effective concentration range for detecting KRAS point mutations. Especially, because the apyrimidinic site-induced guanine/pterin binding is selective for the detection of wild-type DNA, the sensing system can be applied for clinical mutation level detection of all kinds of KRAS point mutations (G → A, G → C and G → T) in blood samples, which is crucial for the personalized therapy and therapeutic evaluation of patients with most KRAS-related cancer types.
Collapse
Affiliation(s)
- Ni Zeng
- College of Chemistry and Chemical Engineering, Central South University
| | - Yaxin Guo
- College of Chemistry and Chemical Engineering, Central South University
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University
| |
Collapse
|
13
|
Abstract
RAS mutation is the most frequent oncogenic alteration in human cancers. KRAS is the most frequently mutated followed by NRAS. The emblematic KRAS mutant cancers are pancreatic, colorectal, lung adenocarcinomas and urogenital cancers. KRAS mutation frequencies are relatively stable worldwide in various cancer types with the one exception of lung adenocarcinoma. The frequencies of KRAS variant alleles appears cancer type specific, reflecting the various carcinogenic processes. In addition to point mutation KRAS, allelic imbalances are also frequent in human cancers leading to the predominance of a mutant allele. KRAS mutant cancers are characterized by typical, cancer-type-specific co-occurring mutations and distinct gene expression signatures. The heterogeneity of KRAS mutant primary cancers is significant, affecting the variant allele frequency, which could lead to unpredictable branching development in metastases. Selection of minute mutant subclones in the primary tumors or metastases during target therapies can also occur frequently in lung or colorectal cancers leading to acquired resistance. Ultrahigh sensitivity techniques are now routinely available for diagnostic purposes, but the proper determination of mutant allele frequency of KRAS in the primary or metastatic tissues may have larger clinical significance.
Collapse
Affiliation(s)
- Jozsef Timar
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Auenbruggerpl. 2, 8036, Graz, Austria
| |
Collapse
|
14
|
The Role of the Liquid Biopsy in Decision-Making for Patients with Non-Small Cell Lung Cancer. J Clin Med 2020; 9:jcm9113674. [PMID: 33207619 PMCID: PMC7696948 DOI: 10.3390/jcm9113674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy is a rapidly emerging tool of precision oncology enabling minimally invasive molecular diagnostics and longitudinal monitoring of treatment response. For the clinical management of advanced stage lung cancer patients, detection and quantification of circulating tumor DNA (ctDNA) is now widely adopted into clinical practice. Still, interpretation of results and validation of ctDNA-based treatment decisions remain challenging. We report here our experience implementing liquid biopsies into the clinical management of lung cancer. We discuss advantages and limitations of distinct ctDNA assay techniques and highlight our approach to the analysis of recurrent molecular alterations found in lung cancer. Moreover, we report three exemplary clinical cases illustrating the complexity of interpreting liquid biopsy results in clinical practice. These cases underscore the potential and current limitations of liquid biopsy, focusing on the difficulty of interpreting discordant findings. In our view, despite all current limitations, the analysis of ctDNA in lung cancer patients is an essential and highly versatile complementary diagnostic tool for the clinical management of lung cancer patients in the era of precision oncology.
Collapse
|
15
|
Wehrle J, Philipp U, Jolic M, Follo M, Hussung S, Waldeck S, Deuter M, Rassner M, Braune J, Rawluk J, Greil C, Waller CF, Becker H, Duque-Afonso J, Illert AL, Fritsch RM, Meiss F, Duyster J, von Bubnoff N, Scherer F. Personalized Treatment Selection and Disease Monitoring Using Circulating Tumor DNA Profiling in Real-World Cancer Patient Management. Diagnostics (Basel) 2020; 10:E550. [PMID: 32748806 PMCID: PMC7459590 DOI: 10.3390/diagnostics10080550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) in the blood plasma of cancer patients is an emerging biomarker used across oncology, facilitating noninvasive disease monitoring and genetic profiling at various disease milestones. Digital droplet PCR (ddPCR) technologies have demonstrated high sensitivity and specificity for robust ctDNA detection at relatively low costs. Yet, their value for ctDNA-based management of a broad population of cancer patients beyond clinical trials remains elusive. METHODS We developed mutation-specific ddPCR assays that were optimized for their use in real-world cancer management, covering 12 genetic aberrations in common cancer genes, such as EGFR, BRAF, KIT, KRAS, and NRAS. We assessed the limit of detection (LOD) and the limit of blank (LOB) for each assay and validated their performance for ctDNA detection using matched tumor sequencing. RESULTS We applied our custom ddPCR assays to 352 plasma samples from 96 patients with solid tumors. Mutation detection in plasma was highly concordant with tumor sequencing, demonstrating high sensitivity and specificity across all assays. In 20 cases, radiographic cancer progression was mirrored by an increase of ctDNA concentrations or the occurrence of novel mutations in plasma. Moreover, ctDNA profiling at diagnosis and during disease progression reflected personalized treatment selection through the identification of actionable gene targets in 20 cases. CONCLUSION Collectively, our work highlights the potential of ctDNA assessment by sensitive ddPCR for accurate disease monitoring, robust identification of resistance mutations, and upfront treatment selection in patients with solid tumors. We envision an increasing future role for ctDNA profiling within personalized cancer management in daily clinical routine.
Collapse
Affiliation(s)
- Julius Wehrle
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Ulrike Philipp
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Martina Jolic
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Marie Follo
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Saskia Hussung
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
- Department of Medical Oncology and Hematology, Zurich University Hospital, 8091 Zurich, Switzerland
| | - Silvia Waldeck
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Max Deuter
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Michael Rassner
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Jan Braune
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Justyna Rawluk
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Christine Greil
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Cornelius F. Waller
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Heiko Becker
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Jesús Duque-Afonso
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Anna L. Illert
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Ralph M. Fritsch
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
- Department of Medical Oncology and Hematology, Zurich University Hospital, 8091 Zurich, Switzerland
| | - Frank Meiss
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Justus Duyster
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| | - Nikolas von Bubnoff
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
| | - Florian Scherer
- Department Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.W.); (U.P.); (M.J.); (M.F.); (S.H.); (S.W.); (M.D.); (M.R.); (J.B.); (J.R.); (C.G.); (C.F.W.); (H.B.); (J.D.-A.); (A.L.I.); (R.M.F.); (J.D.)
| |
Collapse
|
16
|
Braun LM, Lagies S, Klar RFU, Hussung S, Fritsch RM, Kammerer B, Wittel UA. Metabolic Profiling of Early and Late Recurrent Pancreatic Ductal Adenocarcinoma Using Patient-Derived Organoid Cultures. Cancers (Basel) 2020; 12:cancers12061440. [PMID: 32492856 PMCID: PMC7352957 DOI: 10.3390/cancers12061440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with high mortality and will become the second most common cause of cancer-associated mortality by 2030. The poor prognosis arises from a lack of sensitive biomarkers, limited therapeutic options, and the astonishingly high recurrence rate after surgery of 60-80%. The factors driving this recurrence, however, remain enigmatic. Therefore, we generated patient-derived organoids (PDOs) from early- and late-recurrent PDAC patients. Cellular identity of PDOs was confirmed by qPCR, ddPCR, and IHC analyses. This is the first study investigating the metabolism in PDOs of different, clinically significant PDAC entities by untargeted GC/MS profiling. Partial least square discriminant analysis unveiled global alterations between the two sample groups. We identified nine metabolites to be increased in early recurrent PDOs in comparison to late recurrent PDOs. More than four-times increased were fumarate, malate, glutamate, aspartate, and glutamine. Hence, α-keto acids were elevated in PDO-conditioned medium derived from early recurrent patients. We therefore speculate that an increased anaplerotic metabolism fuels the Krebs-cycle and a corresponding higher accessibility to energy fastens the recurrence in PDAC patients. Therein, a therapeutic intervention could delay PDAC recurrence and prolong survival of affected patients or could serve as biomarker to predict recurrence in the future.
Collapse
Affiliation(s)
- Lukas M. Braun
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Department of General and Visceral Surgery, University of Freiburg, Medical Center Faculty of Medicine, 79106 Freiburg, Germany
- Institute of Biology II, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Institute of Biology II, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Rhena F. U. Klar
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), University of Freiburg Medical Center, 79104 Freiburg, Germany; (R.F.U.K.); (S.H.); (R.M.F.)
- SFB/Collaborative Research Center 850 (CRC 850)—Control of Cell Motility in Morphogenesis, Cancer Invasion and Metastasis, University of Freiburg, 79104 Freiburg, Germany
| | - Saskia Hussung
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), University of Freiburg Medical Center, 79104 Freiburg, Germany; (R.F.U.K.); (S.H.); (R.M.F.)
- German Cancer Consortium, 79104 Freiburg, Germany
| | - Ralph M. Fritsch
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), University of Freiburg Medical Center, 79104 Freiburg, Germany; (R.F.U.K.); (S.H.); (R.M.F.)
- SFB/Collaborative Research Center 850 (CRC 850)—Control of Cell Motility in Morphogenesis, Cancer Invasion and Metastasis, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium, 79104 Freiburg, Germany
- Comprehensive Cancer Center Freiburg, 79104 Freiburg, Germany
- Department of Medical Oncology and Hematology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (B.K.); (U.A.W.)
| | - Uwe A. Wittel
- Department of General and Visceral Surgery, University of Freiburg, Medical Center Faculty of Medicine, 79106 Freiburg, Germany
- Correspondence: (B.K.); (U.A.W.)
| |
Collapse
|