1
|
Chung J, Xiao S, Gao Y, Soung YH. Recent Technologies towards Diagnostic and Therapeutic Applications of Circulating Nucleic Acids in Colorectal Cancers. Int J Mol Sci 2024; 25:8703. [PMID: 39201393 PMCID: PMC11354501 DOI: 10.3390/ijms25168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy has emerged as a promising noninvasive approach for colorectal cancer (CRC) management. This review focuses on technologies detecting circulating nucleic acids, specifically circulating tumor DNA (ctDNA) and circulating RNA (cfRNA), as CRC biomarkers. Recent advancements in molecular technologies have enabled sensitive and specific detection of tumor-derived genetic material in bodily fluids. These include quantitative real-time PCR, digital PCR, next-generation sequencing (NGS), and emerging nanotechnology-based methods. For ctDNA analysis, techniques such as BEAMing and droplet digital PCR offer high sensitivity in detecting rare mutant alleles, while NGS approaches provide comprehensive genomic profiling. cfRNA detection primarily utilizes qRT-PCR arrays, microarray platforms, and RNA sequencing for profiling circulating microRNAs and discovering novel RNA biomarkers. These technologies show potential in early CRC detection, treatment response monitoring, minimal residual disease assessment, and tumor evolution tracking. However, challenges remain in standardizing procedures, optimizing detection limits, and establishing clinical utility across disease stages. This review summarizes current circulating nucleic acid detection technologies, their CRC applications, and discusses future directions for clinical implementation.
Collapse
Affiliation(s)
| | | | | | - Young Hwa Soung
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.C.); (S.X.); (Y.G.)
| |
Collapse
|
2
|
Popescu I, Croitoru VM, Croitoru-Cazacu IM, Dudau AM, Herlea V, Dima SO, Croitoru AE. Dynamics of RAS Mutations in Liquid Biopsies in Metastatic Colorectal Cancer Patients-Case Series and Literature Review. J Pers Med 2024; 14:750. [PMID: 39064004 PMCID: PMC11278408 DOI: 10.3390/jpm14070750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Liquid biopsies can accurately identify molecular alterations in patients with colorectal cancer with high concordance with tissue analysis and shorter turnaround times. Circulating tumor (ct) DNA analysis can be used for diagnosing and monitoring tumor evolution in patients with metastatic colorectal cancer who are treated with EGFR inhibitors. In this article, we reported three clinical cases to illustrate the relevance of RAS mutations identified in ctDNA samples of patients with wild-type metastatic colorectal cancer who received an EGFR inhibitor plus chemotherapy as first-line treatment. The identification of RAS mutations in these patients is one of the most frequently identified mechanisms of acquired resistance. However, detecting a KRAS mutation via liquid biopsy can be caused by inter-tumor heterogeneity or it can be a false positive due to clonal hematopoiesis. More research is needed to determine whether ctDNA monitoring may help guide therapy options in metastatic colorectal cancer patients. We performed a literature review to assess the technologies that are used for analysis of RAS mutations on ctDNA, the degree of agreement between tissue and plasma and the importance of tissue/plasma discordant cases.
Collapse
Affiliation(s)
- Ionut Popescu
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (I.P.); (V.M.C.)
| | - Vlad M. Croitoru
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (I.P.); (V.M.C.)
- Department of Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Irina M. Croitoru-Cazacu
- Department of Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (S.O.D.)
| | - Ana-Maria Dudau
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (I.P.); (V.M.C.)
- Department of Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vlad Herlea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (S.O.D.)
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Olimpia Dima
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (S.O.D.)
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | | |
Collapse
|
3
|
Turabi K, Klute K, Radhakrishnan P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers (Basel) 2024; 16:2432. [PMID: 39001494 PMCID: PMC11240538 DOI: 10.3390/cancers16132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream, has emerged as a revolutionary tool in cancer management. This review delves into the biology of ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of which offer information about the state and nature of the tumor. Comprehensive DNA profiling has been enabled by methods such as whole genome sequencing and methylation analysis. The low abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted next-generation exome sequencing, more valuable and accurate for mutation profiling and detection. There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.
Collapse
Affiliation(s)
- Khadija Turabi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey Klute
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Torresan S, de Scordilli M, Bortolot M, Di Nardo P, Foltran L, Fumagalli A, Guardascione M, Ongaro E, Puglisi F. Liquid biopsy in colorectal cancer: Onward and upward. Crit Rev Oncol Hematol 2024; 194:104242. [PMID: 38128627 DOI: 10.1016/j.critrevonc.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide. In recent years, liquid biopsy has emerged as one of the most interesting areas of research in oncology, leading to innovative trials and practical changes in all aspects of CRC management. RNAs and cell free DNA (cfDNA) methylation are emerging as promising biomarkers for early diagnosis. Post-surgical circulating tumour DNA (ctDNA) can aid in evaluating minimal residual disease and personalising adjuvant treatment. In rectal cancer, ctDNA could improve response assessment to neoadjuvant therapy and risk stratification, especially in the era of organ-preservation trials. In the advanced setting, ctDNA analysis offers the opportunity to monitor treatment response and identify driver and resistance mutations more comprehensively than traditional tissue analysis, providing prognostic and predictive information. The aim of this review is to provide a detailed overview of the clinical applications and future perspectives of liquid biopsy in CRC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Marco de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy.
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Paola Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Arianna Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Callesen LB, Boysen AK, Andersen CSA, Pallisgaard N, Spindler KLG. The Importance of Feasibility Assessment in the Design of ctDNA Guided Trials - Results From the OPTIPAL II Study. Clin Colorectal Cancer 2023; 22:421-430.e1. [PMID: 37586928 DOI: 10.1016/j.clcc.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Both quantitative and molecular changes in ctDNA can hold important information when treating metastatic colorectal cancer (mCRC), but its clinical utility is yet to be established. Before conducting a large-scale randomized trial, it is essential to test feasibility. This study investigates whether ctDNA is feasible for detecting patients who will benefit from treatment with epidermal growth factor receptor inhibitors and the prognostic value of circulating tumor DNA (ctDNA) response. MATERIALS AND METHODS Patients with mCRC, who were considered for systemic palliative treatment and were eligible for ctDNA analysis. Mutational testing on cell-free DNA (cfDNA) was done by ddPCR. ctDNA response from baseline to the third treatment cycle was evaluated in patients with detectable ctDNA at baseline. ctDNA maximum response was defined as undetectable ctDNA at the third treatment cycle, ctDNA partial response as any decrease in the ctDNA level, and ctDNA progression as any increase in the ctDNA level. RESULTS Forty-nine patients were included. The time to test results for mutational testing on cfDNA was significantly shorter than on tumor tissue (p < .001). Progression-free survival were 11.2 months (reference group), 7.5 months (HR = 10.7, p= .02), and 4.6 months (HR = 11.4, p= .02) in patients with ctDNA maximum response, partial response, and progression, respectively. Overall survival was 31.2 months (reference group), 15.2 months (HR = 4.1, p= .03), and 9.0 months (HR = 2.6, p= .03) in patients with ctDNA maximum response, partial response, and progression, respectively. CONCLUSION Pretreatment mutational testing on cfDNA in daily clinic is feasible and can be applied in randomized clinical trials evaluating the clinical utility of ctDNA. Early dynamics in ctDNA during systemic treatment hold prognostic value.
Collapse
Affiliation(s)
- Louise Bach Callesen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | | | - Christina Søs Auður Andersen
- Department of Pathology, Zealand University Hospital, Næstved, Denmark; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, Næstved, Denmark; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Karen-Lise Garm Spindler
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Lin CY, Shen MY, Chen WTL, Yang CA. Evaluation of the Prognostic Value of Low-Frequency KRAS Mutation Detection in Circulating Tumor DNA of Patients with Metastatic Colorectal Cancer. J Pers Med 2023; 13:1051. [PMID: 37511664 PMCID: PMC10381461 DOI: 10.3390/jpm13071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
KRAS mutation in tumor tissue is a well-known predictor of resistance to the treatment of anti-EGFR antibodies in metastatic colorectal cancers (mCRC). However, the prognostic value of low-frequency plasma circulating tumor DNA (ctDNA) KRAS mutation in predicting treatment resistance in pretreated mCRC patients remains controversial. This study retrospectively reviewed the clinical course, including response to anti-EGFR and anti-VEGF therapies, and changes in serum tumor marker levels along with image studies in mCRC patients with <1.5% KRAS mutations detected in plasma ctDNA by next-generation sequencing (NGS) at a single center in Taiwan. We identified six pretreated mCRC patients with low-frequency KRAS G12V/G12D/G12S/G13D mutations (variant allele frequency 0.26~1.23%) in plasma ctDNA. Co-occurring low-frequency ctDNA mutations in APC, TP53, MAP2K1, KEAP1, or CTNNB1 were also detected. Although all six patients had treatment adjustments within one month after the ctDNA genetic test, image-evident tumor progression was noted in all patients within a median of 4 months afterwards. Re-challenge therapy with a combination of anti-EGFR, anti-VEGF, and FOLFIRI chemotherapy was found to be ineffective in a patient with 0.38% KRAS G12D mutation in baseline ctDNA. Our study suggests that the detection of low-frequency KRAS mutations in ctDNA could be used as a predictor of treatment response in mCRC patients.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Ming-Yin Shen
- Department of Colorectal Surgery, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-An Yang
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
7
|
Wang D, Zhao P, Lu T, Ren J, Zhu L, Han X, Zhang G, Dong X, Ma H, Yu M, Cai H. ctDNA as a prognostic biomarker in resectable CLM: Systematic review and meta-analysis. Open Life Sci 2023; 18:20220615. [PMID: 37250841 PMCID: PMC10224622 DOI: 10.1515/biol-2022-0615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Cell-free circulating tumor DNA (ctDNA) is synthesized by tumor cells, including metastatic tumors, and circulates in the bloodstream. Evidence suggests that ctDNA is a potential predictive and prognostic biomarker for colorectal cancer (CRC), but its predictive efficacy in detecting CRC liver metastasis (CLM) remains unclear. Additionally, its utility in the clinical setting needs further investigation. We conducted a meta-analysis to determine the utility of ctDNA as a biomarker for predicting the prognosis of CLM and investigate the relationship between CLM and ctDNA positivity. A literature search was performed in electronic databases to identify relevant studies published up to March 19, 2022. We retrieved data on overall survival (OS), disease-free survival (DFS), and recurrence-free survival (RFS) for both ctDNA-positive and ctDNA-negative colorectal liver metastasis (CLM) patients from the selected articles. Hazard ratios (HRs) were also calculated for these survival outcomes analysis was also performed. The stability of the combined meta-analysis was verified by sensitivity analysis and publication bias evaluation. Ten trials were included, and 615 patients were evaluated. In patients with CLM, pooled HRs revealed a substantial link between ctDNA positivity and RFS/DFS. Subgroup analysis revealed that ctDNA had a prospective detection value. Sensitivity analysis and publication bias evaluation indicated stable results. Although the results on pooled HR for OS suggested that ctDNA-positive patients had a shorter survival time, their pooled HRs had a relatively evident heterogeneity, and sensitivity analysis and publication bias evaluation indicated that pooled HRs were extremely unstable. In conclusion, our results demonstrate that ctDNA appears to be a prognostic biomarker for resectable CLM patients.
Collapse
Affiliation(s)
- Da Wang
- School of Medicine Jiangsu University, Zhenjiang, 212000, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Penglai Zhao
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Tingting Lu
- Institution of Clinical Research and Evidence Based Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Jingyao Ren
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
- School of Clinical Medicine Ning Xia Medical University, Yinchuan, Ning Xia, 750004, China
| | - Lihui Zhu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
- School of Clinical Medicine Ning Xia Medical University, Yinchuan, Ning Xia, 750004, China
| | - Xiaoyong Han
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
- School of Clinical Medicine Ning Xia Medical University, Yinchuan, Ning Xia, 750004, China
| | - Guangming Zhang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xiaohua Dong
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
- First Clinical College of Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Haizhong Ma
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Miao Yu
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hui Cai
- School of Medicine Jiangsu University, Zhenjiang, 212000, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000, China
| |
Collapse
|
8
|
Sayagués JM, Montero JC, Jiménez-Pérez A, Del Carmen S, Rodríguez M, Vidal Tocino R, Montero E, Sanz J, Abad M. Analysis of Circulating Tumor DNA in Synchronous Metastatic Colorectal Cancer at Diagnosis Predicts Overall Patient Survival. Int J Mol Sci 2023; 24:ijms24098438. [PMID: 37176143 PMCID: PMC10179090 DOI: 10.3390/ijms24098438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Sporadic colorectal cancer (sCRC) initially presents as metastatic tumors in 25-30% of patients. The 5-year overall survival (OS) in patients with metastatic sCRC is 50%, falling to 10% in patients presenting with synchronous metastatic disease (stage IV). In this study, we systematically analyzed the mutations of RAS, PIK3CA and BRAF genes in circulating tumor DNA (ctDNA) and tumoral tissue DNA (ttDNA) from 51 synchronous metastatic colorectal carcinoma (SMCC) patients by real-time PCR, and their relationship with the clinical, biological and histological features of disease at diagnosis. The highest frequency of mutations detected was in the KRAS gene, in tumor biopsies and plasma samples, followed by mutations of the PIK3CA, NRAS and BRAF genes. Overall, plasma systematically contained those genetic abnormalities observed in the tumor biopsy sample from the same subject, the largest discrepancies detected between the tumor biopsy and plasma from the same patient being for mutations in the KRAS and PIK3CA genes, with concordances of genotyping results between ttDNA and ctDNA at diagnosis of 75% and 84%, respectively. Of the 51 SMCC patients in the study, 25 (49%) showed mutations in at least 1 of the 4 genes analyzed in patient plasma. From the prognostic point of view, the presence and number of the most common mutations in the RAS, PIK3CA and BRAF genes in plasma from SMCC patients are independent prognostic factors for OS. Determination of the mutational status of ctDNA in SMCC could be a key tool for the clinical management of patients.
Collapse
Affiliation(s)
- José María Sayagués
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centers-Oncology (CIBERONC), 28029 Madrid, Spain
| | - Juan Carlos Montero
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centers-Oncology (CIBERONC), 28029 Madrid, Spain
| | - Andrea Jiménez-Pérez
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centers-Oncology (CIBERONC), 28029 Madrid, Spain
| | - Sofía Del Carmen
- Department of Pathology, University Hospital of Marqués de Valdecilla, 39008 Santander, Spain
| | - Marta Rodríguez
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centers-Oncology (CIBERONC), 28029 Madrid, Spain
| | - Rosario Vidal Tocino
- Department of Oncology and IBSAL, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Enrique Montero
- Department of Pathology, University Hospital of Zamora, 49071 Zamora, Spain
| | - Julia Sanz
- Department of Pathology, Puerto Real University Hospital, 11510 Cadiz, Spain
| | - Mar Abad
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centers-Oncology (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
9
|
Spindler KLG, Jakobsen A. Circulating tumor DNA: Response Evaluation Criteria in Solid Tumors - can we RECIST? Focus on colorectal cancer. Ther Adv Med Oncol 2023; 15:17588359231171580. [PMID: 37152423 PMCID: PMC10154995 DOI: 10.1177/17588359231171580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Interest in the measurement of circulating tumor DNA (ctDNA) in colorectal cancer (CRC) has increased during the past decade. The analysis of quantitative ctDNA changes as a general response evaluation criterion during systemic treatment is a scientific approach with high clinical potential, and results can be transferred to a pan-cancer concept if relevantly investigated. The purpose of this overview is to discuss the current evidence for ctDNA as a marker of response in metastatic CRC (mCRC) and to propose criteria for definitions of response to systemic therapies applicable in prospective clinical trials. We discuss the literature, which supports a new definition of ctDNA Response Evaluation Criteria in Solid Tumors. Finally, we discuss the challenges in preparations of the optimal trial design to establish the true clinical utility of ctDNA.
Collapse
Affiliation(s)
- Karen-Lise Garm Spindler
- Department of Oncology, Aarhus University
Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus
DK-8200, Denmark
| | - Anders Jakobsen
- Department of Oncology, Institute of Regional
Health Services, University of Southern Denmark, Vejle University Hospital,
Vejle, Denmark
| |
Collapse
|
10
|
Kramer A, Schuuring E, Vessies DCL, van der Leest P, Geerlings MJ, Rozendal P, Lanfermeijer M, Linders TC, van Kempen LC, Fijneman RJA, Ligtenberg MJL, Meijer GA, van den Broek D, Retèl VP, Coupé VMH. A Micro-Costing Framework for Circulating Tumor DNA Testing in Dutch Clinical Practice. J Mol Diagn 2023; 25:36-45. [PMID: 36402278 DOI: 10.1016/j.jmoldx.2022.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is a promising new biomarker with multiple potential applications in cancer care. Estimating total cost of ctDNA testing is necessary for reimbursement and implementation, but challenging because of variations in workflow. We aimed to develop a micro-costing framework for consistent cost calculation of ctDNA testing. First, the foundation of the framework was built, based on the complete step-wise diagnostic workflow of ctDNA testing. Second, the costing method was set up, including costs for personnel, materials, equipment, overhead, and failures. Third, the framework was evaluated by experts and applied to six case studies, including PCR-, mass spectrometry-, and next-generation sequencing-based platforms, from three Dutch hospitals. The developed ctDNA micro-costing framework includes the diagnostic workflow from blood sample collection to diagnostic test result. The framework was developed from a Dutch perspective and takes testing volume into account. An open access tool is provided to allow for laboratory-specific calculations to explore the total costs of ctDNA testing specific workflow parameters matching the setting of interest. It also allows to straightforwardly assess the impact of alternative prices or assumptions on the cost per sample by simply varying the input parameters. The case studies showed a wide range of costs, from €168 to €7638 ($199 to $9124) per sample, and generated information. These costs are sensitive to the (coverage of) platform, setting, and testing volume.
Collapse
Affiliation(s)
- Astrid Kramer
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Daan C L Vessies
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul van der Leest
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Pim Rozendal
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirthe Lanfermeijer
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Theodora C Linders
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Léon C van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboudumc, Nijmegen, the Netherlands; Department of Pathology, Radboudumc, Nijmegen, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Valesca P Retèl
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Health Technology and Services Research, University of Twente, Enschede, the Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Liquid Biopsies in Colorectal Liver Metastases: Towards the Era of Precision Oncologic Surgery. Cancers (Basel) 2022; 14:cancers14174237. [PMID: 36077774 PMCID: PMC9455047 DOI: 10.3390/cancers14174237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor mutational analysis has been incorporated into the management of patients with CRLM since it can provide valuable prognostic information as well as guide peri-operative systemic treatment. Unlike tumor biopsy, liquid biopsy has emerged as a promising, non-invasive alternative that can detect cell-derived markers from a variety of body fluids and might better characterize all subclones present at a specific time point and allow sequential monitoring of disease evolution. Although not currently considered standard of care, an increasing number of cancer centers are nowadays routinely using liquid biopsies in the treatment of CRLM patients with promising results. The current review provides an overview of liquid biopsies in cancer therapeutics and focuses on the application of this relatively new approach on patients with CRLM.
Collapse
|
12
|
Watanabe J, Maeda H, Nagasaka T, Yokota M, Hirata K, Akazawa N, Kagawa Y, Yamada T, Shiozawa M, Ando T, Kato T, Mishima H, Sakamoto J, Oba K, Nagata N. Multicenter, single-arm, phase II study of the continuous use of panitumumab in combination with FOLFIRI after FOLFOX for RAS wild-type metastatic colorectal cancer - Exploratory sequential examination of acquired mutations in circulating cell-free DNA. Int J Cancer 2022; 151:2172-2181. [PMID: 35723084 DOI: 10.1002/ijc.34184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/11/2022]
Abstract
This multicenter single-arm, phase II study evaluated the efficacy and safety of uninterrupted panitumumab usage combined with cytotoxic doublets for unresectable/metastatic colorectal cancer (mCRC). Additionally, clinical value of the RAS/BRAF mutation status in circulating cell-free DNA (ccfDNA) was evaluated; this evaluation was measured independently of the protocol treatment. Eligible patients with RAS wild-type mCRC who had received the first-line panitumumab plus FOLFOX treatment were recruited and administered continuous panitumumab combined with FOLFIRI. Progression-free survival (PFS) at 6 months was the primary endpoint, with threshold and expected values of 35% and 50%, respectively. In total, 54 patients were enrolled between October 2017 and October 2019. The crude 6-month PFS rate was 37.0%, with a 4.8-month median PFS. The response rate and disease control rate were 16.7 % and 50.0%, respectively. Notably, of the 54 participants, 17 showed RAS/BRAF mutations until the end of the protocol treatment, and of the 22 patients with progressive disease as their best response, 10 possessed RAS/BRAF mutations in their plasma ccfDNA at baseline. The median PFS significantly differed among patients harboring tumors with BRAF and RAS mutations and those with wild-type tumors. In conclusion, this study failed to show the expected efficacy of the continuous panitumumab use in the second-line treatment. Liquid biopsy discriminated the duration of PFS according to the mutation status. The effectiveness of continuous treatment with panitumumab should be evaluated in patients with RAS/BRAF wild-type mCRC determined by liquid biopsy at the start of the second-line treatment.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hiromichi Maeda
- Department of Surgery, Kochi Medical School Hospital, Kochi, Japan
| | - Takeshi Nagasaka
- Department of Clinical Oncology, Kawasaki Medical School, Okayama, Japan
| | - Mitsuru Yokota
- Department of Surgery, Kurashiki Central Hospital (Ohara Healthcare Foundation) Okayama, Japan
| | - Keiji Hirata
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - Naoya Akazawa
- Department of Digestive Surgery, Sendai City Medical Center Sendai Open Hospital, Sendai, Japan
| | - Yoshinori Kagawa
- Department of Gastrointestinal Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - Takeshi Yamada
- Department of Digestive Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Takayuki Ando
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Takeshi Kato
- Department of Gastrointestinal Surgery, National Hospital Organization Osaka, National Hospital, Osaka, Japan
| | | | | | - Koji Oba
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Nagata
- Department of Surgery, Kitakyusyu General Hospital, Kitakyusyu, Japan
| |
Collapse
|
13
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, Fernandes Q, Al-Zaidan L, Krishnankutty R, Merhi M, Uddin S, Dermime S. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res 2022; 41:99. [PMID: 35292091 PMCID: PMC8922757 DOI: 10.1186/s13046-022-02318-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.
Collapse
Affiliation(s)
- Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
14
|
Duffy MJ, Crown J. Use of Circulating Tumour DNA (ctDNA) for Measurement of Therapy Predictive Biomarkers in Patients with Cancer. J Pers Med 2022; 12:99. [PMID: 35055414 PMCID: PMC8779216 DOI: 10.3390/jpm12010099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Biomarkers that predict likely response or resistance to specific therapies are critical in personalising treatment for cancer patients. Such biomarkers are now available for an increasing number of anti-cancer therapies, especially targeted therapy and immunotherapy. The gold-standard method for determining predictive biomarkers requires tumour tissue. Obtaining tissue, however, is not always possible and even if possible, the amount or quality of tissue obtained may be inadequate for biomarker analysis. Tumour DNA, however, can be released into the bloodstream, giving rise to what is referred to as circulating tumour DNA (ctDNA). In contrast to tissue, blood can be obtained from effectively all patients in a minimally invasive and safe manner. Other advantages of blood over tissue for biomarker testing include a shorter turn-around time and an ability to perform serial measurements. Furthermore, blood should provide a more complete profile of mutations present in heterogeneous tumours than a single-needle tissue biopsy. A limitation of blood vis-à-vis tissue, however, is lower sensitivity and, thus, the possibility of missing an actionable mutation. Despite this limitation, blood-based predictive biomarkers, such as mutant EGFR for predicting response to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer and mutant PIK3CA for predicting response to alpelisib in combination with fulvestrant in advanced breast cancer, may be used when tissue is unavailable. Although tissue remains the gold standard for detecting predictive biomarkers, it is likely that several further blood-based assays will soon be validated and used when tissue is unavailable or unsuitable for analysis.
Collapse
Affiliation(s)
- Michael J. Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W Dublin, Ireland
- UCD Clinical Research Centre, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent’s University Hospital, D04 T6F4 Dublin, Ireland;
| |
Collapse
|
15
|
van 't Erve I, Wesdorp NJ, Medina JE, Ferreira L, Leal A, Huiskens J, Bolhuis K, van Waesberghe JHTM, Swijnenburg RJ, van den Broek D, Velculescu VE, Kazemier G, Punt CJA, Meijer GA, Fijneman RJA. KRAS A146 Mutations Are Associated With Distinct Clinical Behavior in Patients With Colorectal Liver Metastases. JCO Precis Oncol 2021; 5:PO.21.00223. [PMID: 34820593 PMCID: PMC8608264 DOI: 10.1200/po.21.00223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Somatic KRAS mutations occur in approximately half of the patients with metastatic colorectal cancer (mCRC). Biologic tumor characteristics differ on the basis of the KRAS mutation variant. KRAS mutations are known to influence patient prognosis and are used as predictive biomarker for treatment decisions. This study examined clinical features of patients with mCRC with a somatic mutation in KRAS G12, G13, Q61, K117, or A146. Patients with mCRC and a KRAS A146 mutation are characterized by high tumor burden and poor prognosis![]()
Collapse
Affiliation(s)
- Iris van 't Erve
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nina J Wesdorp
- Deparment of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - Jamie E Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leonardo Ferreira
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alessandro Leal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.,Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Karen Bolhuis
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan-Hein T M van Waesberghe
- Deparment of Radiology and Molecular Imaging, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - Rutger-Jan Swijnenburg
- Deparment of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - Daan van den Broek
- Department for Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Victor E Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Geert Kazemier
- Deparment of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Olmedillas-López S, Olivera-Salazar R, García-Arranz M, García-Olmo D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol Diagn Ther 2021; 26:61-87. [PMID: 34773243 DOI: 10.1007/s40291-021-00562-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
In the era of personalized medicine and targeted therapies for the management of patients with cancer, ultrasensitive detection methods for tumor genotyping, such as next-generation sequencing or droplet digital polymerase chain reaction (ddPCR), play a significant role. In the search for less invasive strategies for diagnosis, prognosis and disease monitoring, the number of publications regarding liquid biopsy approaches using ddPCR has increased substantially in recent years. There is a long list of malignancies in which ddPCR provides a reliable and accurate tool for detection of nucleic acid-based markers derived from cell-free DNA, cell-free RNA, circulating tumor cells, extracellular vesicles or exosomes when isolated from whole blood, plasma and serum, helping to anticipate tumor relapse or unveil intratumor heterogeneity and clonal evolution in response to treatment. This updated review describes recent developments in ddPCR platforms and provides a general overview about the major applications of liquid biopsy in blood, including its utility for molecular response and minimal residual disease monitoring in hematological malignancies or the therapeutic management of patients with colorectal or lung cancer, particularly for the selection and monitoring of treatment with tyrosine kinase inhibitors. Although plasma is the main source of genetic material for tumor genomic profiling, liquid biopsy by ddPCR is being investigated in a wide variety of biologic fluids, such as cerebrospinal fluid, urine, stool, ocular fluids, sputum, saliva, bronchoalveolar lavage, pleural effusion, mucin, peritoneal fluid, fine needle aspirate, bile or pancreatic juice. The present review focuses on these "alternative" sources of genetic material and their analysis by ddPCR in different kinds of cancers.
Collapse
Affiliation(s)
- Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), 28040, Madrid, Spain
| |
Collapse
|
17
|
Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as a Liquid Biopsy Marker in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13184500. [PMID: 34572727 PMCID: PMC8469158 DOI: 10.3390/cancers13184500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Colorectal cancer is one of the most frequent malignant tumors worldwide and the spread of tumor cells through the blood circulation followed by the colonization of distant organs (“metastases”) is the main cause of cancer-related death. The blood is, therefore, an important fluid that can be explored for diagnostic purposes. Liquid biopsy is a new diagnostic concept defined as the analysis of circulating tumor cells or cellular products such as cell-free DNA in the blood or other body fluids of cancer patients. In this review, we summarize and discuss the latest findings using circulating tumor cells and cell-free DNA derived from tumor lesions in the blood of patients with colorectal cancer. Clinical applications include early detection of cancer, identification of patients with a high risk for disease progression after curative surgery, monitoring for disease progression in the context of cancer therapies, and discovery of mechanisms of resistance to therapy. Abstract Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. It is a heterogeneous tumor with a wide genomic instability, leading to tumor recurrence, distant metastasis, and therapy resistance. Therefore, adjunct non-invasive tools are urgently needed to help the current classical staging systems for more accurate prognostication and guiding personalized therapy. In recent decades, there has been an increasing interest in the diagnostic, prognostic, and predictive value of circulating cancer-derived material in CRC. Liquid biopsies provide direct non-invasive access to tumor material, which is shed into the circulation; this enables the analysis of circulating tumor cells (CTC) and genomic components such as circulating free DNA (cfDNA), which could provide the key for personalized therapy. Liquid biopsy (LB) allows for the identification of patients with a high risk for disease progression after curative surgery, as well as longitudinal monitoring for disease progression and therapy response. Here, we will review the most recent studies on CRC, demonstrating the clinical potential and utility of CTCs and ctDNA. We will discuss some of the advantages and limitations of LBs and the future perspectives in the field of CRC management.
Collapse
|