1
|
Ciesielska A, Brzeski J, Zarzeczańska D, Stasiuk M, Makowski M, Brzeska S. Exploring the interaction of biologically active compounds with DNA through the application of the SwitchSense technique, UV-Vis spectroscopy, and computational methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124313. [PMID: 38676984 DOI: 10.1016/j.saa.2024.124313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
DNA is a key target for anticancer and antimicrobial drugs. Assessing the bioactivity of compounds involves in silico and instrumental studies to determine their affinity for biomolecules like DNA. This study explores the potential of the switchSense technique in rapidly evaluating compound bioactivity towards DNA. By combining switchSense with computational methods and UV-Vis spectrophotometry, various bioactive compounds' interactions with DNA were analyzed. The objects of the study were: netropsin (as a model compound that binds in the helical groove), as well as derivatives of pyrazine (PTCA), sulfonamide (NbutylS), and anthraquinone (AQ-NetOH). Though no direct correlation was found between switchSense kinetics and binding modes, this research suggests the technique's broader utility in assessing new compounds' interactions with DNA. used as analytes whose interactions with DNA have not been yet fully described in the literature.
Collapse
Affiliation(s)
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Zarzeczańska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Stasiuk
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Sandra Brzeska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
2
|
Adewusi OO, Waldner CL, Hanington PC, Hill JE, Freeman CN, Otto SJG. Laboratory tools for the direct detection of bacterial respiratory infections and antimicrobial resistance: a scoping review. J Vet Diagn Invest 2024; 36:400-417. [PMID: 38456288 PMCID: PMC11110769 DOI: 10.1177/10406387241235968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.
Collapse
Affiliation(s)
- Olufunto O. Adewusi
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Janet E. Hill
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
4
|
Schlanderer J, Hoffmann H, Lüddecke J, Golubov A, Grasse W, Kindler EV, Kohl TA, Merker M, Metzger C, Mohr V, Niemann S, Pilloni C, Plesnik S, Raya B, Shresta B, Utpatel C, Zengerle R, Beutler M, Paust N. Two-stage tuberculosis diagnostics: combining centrifugal microfluidics to detect TB infection and Inh and Rif resistance at the point of care with subsequent antibiotic resistance profiling by targeted NGS. LAB ON A CHIP 2023; 24:74-84. [PMID: 37999937 DOI: 10.1039/d3lc00783a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Globally, tuberculosis (TB) remains the deadliest bacterial infectious disease, and spreading antibiotic resistances is the biggest challenge for combatting the disease. Rapid and comprehensive diagnostics including drug susceptibility testing (DST) would assure early treatment, reduction of morbidity and the interruption of transmission chains. To date, rapid genetic resistance testing addresses only one to four drug groups while complete DST is done phenotypically and takes several weeks. To overcome these limitations, we developed a two-stage workflow for rapid TB diagnostics including DST from a single sputum sample that can be completed within three days. The first stage is qPCR detection of M. tuberculosis complex (MTBC) including antibiotic resistance testing against the first-line antibiotics, isoniazid (Inh) and rifampicin (Rif). The test is automated by centrifugal microfluidics and designed for point of care (PoC). Furthermore, enriched MTBC DNA is provided in a detachable sample tube to enable the second stage: if the PCR detects MTBC and resistance to either Inh or Rif, the MTBC DNA is shipped to specialized facilities and analyzed by targeted next generation sequencing (tNGS) to assess the complete resistance profile. Proof-of-concept testing of the PoC test revealed an analytical sensitivity of 44.2 CFU ml-1, a diagnostic sensitivity of 96%, and a diagnostic specificity of 100% for MTBC detection. Coupled tNGS successfully provided resistance profiles, demonstrated for samples from 17 patients. To the best of our knowledge, the presented combination of PoC qPCR with tNGS allows for the fastest comprehensive TB diagnostics comprising decentralized pathogen detection with subsequent resistance profiling in a facility specialized in tNGS.
Collapse
Affiliation(s)
| | - Harald Hoffmann
- SYNLAB Gauting SYNLAB Human Genetics Munich, 82131 Gauting, Germany
| | - Jan Lüddecke
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Andrey Golubov
- WHO supranational Tuberculosis Reference Laboratory, IML red, 82131 Gauting, Germany
| | | | | | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | | | - Vanessa Mohr
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Claudia Pilloni
- WHO supranational Tuberculosis Reference Laboratory, IML red, 82131 Gauting, Germany
| | - Sara Plesnik
- WHO supranational Tuberculosis Reference Laboratory, IML red, 82131 Gauting, Germany
| | - Bijendra Raya
- German Nepal Tuberculosis Project (GENETUP), Nepal Anti-Tuberculosis Association (NATA), Kalimati, Nepal
| | - Bhawana Shresta
- German Nepal Tuberculosis Project (GENETUP), Nepal Anti-Tuberculosis Association (NATA), Kalimati, Nepal
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Roland Zengerle
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Markus Beutler
- WHO supranational Tuberculosis Reference Laboratory, IML red, 82131 Gauting, Germany
| | - Nils Paust
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Homann AR, Niebling L, Zehnle S, Beutler M, Delamotte L, Rothmund MC, Czurratis D, Beller KD, Zengerle R, Hoffmann H, Paust N. A microfluidic cartridge for fast and accurate diagnosis of Mycobacterium tuberculosis infections on standard laboratory equipment. LAB ON A CHIP 2021; 21:1540-1548. [PMID: 33625429 DOI: 10.1039/d1lc00035g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a novel centrifugal microfluidic approach for fast and accurate tuberculosis (TB) diagnosis based on the use of standard laboratory equipment. The herein presented workflow can directly be integrated into laboratories with standard equipment and automates complex sample preparation. The system consists of a microfluidic cartridge, a laboratory centrifuge and a standard PCR cycler. The cartridge includes all required reagents and automates collection of bacteria on filter membranes, bacterial lysis, nucleic acid extraction and aliquoting of the DNA extract for PCR analysis. We show that storage of the reagents in aluminium-coated pouches is stable during accelerated storage and transport tests. When the limit of detection was assessed, we found that the cartridge-automated workflow consistently detected 10 CFU ml-1 of mycobacteria in spiked sputum samples. First tests with clinical samples showed a 100% specificity for non-TB specimens. In addition, Mycobacterium tuberculosis (MTB) was re-found in pre-characterized smear microscopy and culture positive sputum samples suggesting a high diagnostic sensitvity. In summary, the novel cartridge-automated workflow enables a flexible and sensitive TB diagnosis without the need to invest in specialized instrumentation.
Collapse
Affiliation(s)
- Ana R Homann
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Laura Niebling
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Steffen Zehnle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Markus Beutler
- IML red, WHO Supranational Tuberculosis Reference Laboratory, Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Lubov Delamotte
- IML red, WHO Supranational Tuberculosis Reference Laboratory, Robert-Koch-Allee 2, 82131 Gauting, Germany
| | | | | | | | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Harald Hoffmann
- SYNLAB Gauting SYNLAB Human Genetics Munich, Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|