1
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
2
|
Campi G, Ricci A, Costa N, Genovesi F, Branca JJV, Paternostro F, Della Posta D. Dynamic Correlations and Disorder in the Masticatory Musculature Network. Life (Basel) 2023; 13:2107. [PMID: 38004247 PMCID: PMC10672239 DOI: 10.3390/life13112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Temporomandibular joint (TMJ) disorders, which affect millions of people worldwide, have multiple etiological factors that make an accurate diagnosis and effective treatments difficult. As a consequence, the gold standard diagnostic criteria for TMJ disorders remain elusive and often depend on subjective decisions. AIM In this context, the lack of a non-invasive quantitative methodology capable of assessing the functional physiological state and, consequently, identifying risk indicators for the early diagnosis of TMJ disorders must be tackled and resolved. METHODOLOGY In this work, we have studied the biomechanics and viscoelastic properties of the functional masticatory system by a non-invasive approach involving 52 healthy subjects, analysed by statistical-physics analysis applied to myotonic measurements on specific points of the masticatory system designing a TMJ network composed of 17 nodes and 20 links. RESULTS We find that the muscle tone and viscoelasticity of a specific cycle linking frontal, temporal, and mandibular nodes of the network play a prominent role in the physiological functionality of the system. At the same time, the functional state is characterised by a landscape of nearly degenerated levels of elasticity in all links of the network, making this parameter critically distributed and deviating from normal behaviour. CONCLUSIONS Time evolution and dynamic correlations between biomechanics and viscoelastic parameters measured on the different cycles of the network provide a quantitative framework associated with the functional state of the masticatory system. Our results are expected to contribute to enriching the taxonomy of this system, primarily based on clinical observations, patient symptoms, and expert consensus.
Collapse
Affiliation(s)
- Gaetano Campi
- Institute of Crystallography, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy;
| | - Alessandro Ricci
- Duferco Corporate Innovation, Via Trevano 2A, 6900 Lugano, Switzerland;
| | - Nicola Costa
- The Anatomical Network APS, Via Fermo 2c, 00182 Rome, Italy; (N.C.); (D.D.P.)
| | | | - Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy;
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy;
| | - Daniele Della Posta
- The Anatomical Network APS, Via Fermo 2c, 00182 Rome, Italy; (N.C.); (D.D.P.)
| |
Collapse
|
3
|
Alev K, Aru M, Vain A, Pehme A, Kaasik P, Seene T. Short-time recovery skeletal muscle from dexamethasone-induced atrophy and weakness in old female rats. Clin Biomech (Bristol, Avon) 2022; 100:105808. [PMID: 36368193 DOI: 10.1016/j.clinbiomech.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several pathological conditions (atrophy, dystrophy, spasticity, inflammation) can change muscle biomechanical parameters. Our previous works have shown that dexamethasone treatment changes skeletal muscle tone, stiffness, elasticity. Exercise training may oppose the side effects observed during dexamethasone treatment. The purpose of this study was to examine the changes in biomechanical parameters (tone, stiffness, elasticity) of skeletal muscle occurring during dexamethasone treatment and subsequent short-time recovery from glucocorticoid-induced muscle atrophy and weakness, as well as the effect of mild therapeutic exercise. METHODS 17 old female rats, aged 22 months were used in this study. The hand-held and non-invasive device (MyotonPRO, Myoton Ltd., Tallinn, Estonia) was used to study changes in biomechanical properties of muscle. Additionally, body and muscle mass, hind limb grip strength were assessed. FINDINGS Results showed that dexamethasone treatment alters muscle tone, stiffness and elasticity. During 20-day recovery period all measured parameters gradually improved towards the average baseline, however, remaining significantly lower than these values. The body and muscle mass, hind limb grip strength of the rats decreased considerably in the groups that received glucocorticoids. After 20 days of recovery, hind limb grip strength of the animals was slightly lower than the baseline value and mild therapeutic exercise had a slight but not significant effect on hind limb grip strength. Biomechanical parameters improved during the recovery period, but only dynamic stiffness and decrement retuned to baseline value. INTERPRETATION The study results show that monitoring muscle biomechanical parameters allows to assess the recovery of atrophied muscle from steroid myopathy.
Collapse
Affiliation(s)
- Karin Alev
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine University of Tartu, Estonia.
| | - Maire Aru
- Clinical Research Centre University of Tartu, Estonia
| | - Arved Vain
- Institute of Physics, Faculty of Science and Technology University Tartu, Estonia
| | - Ando Pehme
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine University of Tartu, Estonia
| | - Priit Kaasik
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine University of Tartu, Estonia
| | - Teet Seene
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine University of Tartu, Estonia
| |
Collapse
|
4
|
Dexamethasone-Induced Adipose Tissue Redistribution and Metabolic Changes: Is Gene Expression the Main Factor? An Animal Model of Chronic Hypercortisolism. Biomedicines 2022; 10:biomedicines10092328. [PMID: 36140428 PMCID: PMC9496558 DOI: 10.3390/biomedicines10092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic hypercortisolism has been associated with the development of several metabolic alterations, mostly caused by the effects of chronic glucocorticoid (GC) exposure over gene expression. The metabolic changes can be partially explained by the GC actions on different adipose tissues (ATs), leading to central obesity. In this regard, we aimed to characterize an experimental model of iatrogenic hypercortisolism in rats with significant AT redistribution. Male Wistar rats were distributed into control (CT) and GC-treated, which received dexamethasone sodium phosphate (0.5 mg/kg/day) by an osmotic minipump, for 4 weeks. GC-treated rats reproduced several characteristics observed in human hypercortisolism/Cushing’s syndrome, such as HPA axis inhibition, glucose intolerance, insulin resistance, dyslipidemia, hepatic lipid accumulation, and AT redistribution. There was an increase in the mesenteric (meWAT), perirenal (prWAT), and interscapular brown (BAT) ATs mass, but a reduction of the retroperitoneal (rpWAT) mass compared to CT rats. Overexpressed lipolytic and lipogenic gene profiles were observed in white adipose tissue (WAT) of GC rats as BAT dysfunction and whitening. The AT remodeling in response to GC excess showed more importance than the increase of AT mass per se, and it cannot be explained just by GC regulation of gene transcription.
Collapse
|
5
|
Kim HE, Lee H. Factors affecting subjective and objective masticatory function in older adults: Importance of an integrated approach. J Dent 2021; 113:103787. [PMID: 34425173 DOI: 10.1016/j.jdent.2021.103787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES This study aimed to subjectively and objectively assess masticatory function and identify related factors in older adults. METHODS From July 2017 to September 2018, we enrolled 115 healthy participants aged between 65 and 86 years. They underwent oral examination, and their stimulated salivary secretion rate and masseter muscle tone and biomechanical properties were assessed. Masticatory performance with two-colored chewing wax was objectively evaluated using the mixing ability index (MAI). Key food intake ability (KFIA) was subjectively assessed using a questionnaire. RESULTS The MAI score was significantly associated with the number of remaining teeth (r = 0.524, p < 0.001) and the tone (r = -0.222, p = 0.017), elasticity (r = -0.242, p = 0.009), and dynamic stiffness (r = -0.265, p = 0.004) of the masseter muscles. In contrast, the KFIA score was only significantly associated with the number of remaining teeth (r = 0.450, p < 0.001). A weak association between the MAI and KFIA scores was observed (r = 0.304, p = 0.001). CONCLUSIONS A combination of objective and subjective methods should be used to accurately assess masticatory function in older adults. In addition to physical factors such as the number of remaining teeth, properties of the masticatory muscles should be evaluated to improve the masticatory function of older adults. CLINICAL SIGNIFICANCE In addition to dental problems, various maxillofacial and oral factors must be considered when establishing management strategies for the improvement of masticatory function in older adults.
Collapse
Affiliation(s)
- Hee-Eun Kim
- Department of Dental Hygiene, Gachon University College of Health Science, Incheon, South Korea.
| | - Haneul Lee
- Department of Physical Therapy, College of Health Science, Gachon University, Incheon, South Korea
| |
Collapse
|
6
|
Kim HE. Influential Factors of Masticatory Performance in Older Adults: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084286. [PMID: 33919497 PMCID: PMC8072885 DOI: 10.3390/ijerph18084286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
While appropriate nutrient intake is important for older adults, various oral problems cause decreased masticatory function. This cross-sectional study aimed to identify the factors associated with decreased masticatory performance in older adults. Oral examinations were performed on 80 participants (mean age: 75.10 ± 5.64 years) to determine the number of functional tooth units (FTUs). Symptoms of periodontal and temporomandibular diseases were evaluated via a questionnaire. The tone, elasticity, and dynamic stiffness of the masseter muscle were measured using the Myoton® PRO device. The mixing ability test was used to assess the masticatory performance, and the mixing ability index (MAI) was calculated. The analysis of covariance test was performed to adjust for confounding factors, and multiple logistic regression analysis was performed to identify the risk factors affecting MAI. A lower MAI was significantly associated with higher tone (p = 0.006) and lower elasticity (p = 0.013). The number of FTUs (adjusted odds ratio (OR) = 0.724, p = 0.029), tone (adjusted OR = 1.215, p = 0.016), and elasticity (adjusted OR = 4.789, p = 0.038) were independently associated with the MAI. Muscle function training and prosthetic treatments may help increase masticatory performance in older adults, which would improve overall health.
Collapse
Affiliation(s)
- Hee-Eun Kim
- Department of Dental Hygiene, Gachon University College of Health Science, Incheon 21936, Korea
| |
Collapse
|
7
|
Alfuraih AM, Tan AL, O'Connor P, Emery P, Mackie S, Wakefield RJ. Reduction in stiffness of proximal leg muscles during the first 6 months of glucocorticoid therapy for giant cell arteritis: A pilot study using shear wave elastography. Int J Rheum Dis 2019; 22:1891-1899. [PMID: 31364284 DOI: 10.1111/1756-185x.13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 01/11/2023]
Abstract
AIM To investigate muscle stiffness changes in patients treated for giant cell arteritis (GCA) with high-dose oral glucocorticoids. METHODS Using ultrasound elastography, shear wave velocity (SWV) was measured in the quadriceps, hamstrings and biceps brachii muscles of 14 patients with GCA (4 male, mean age ± SD, 68.2 ± 4.3 years) within the first 2 weeks of initiating glucocorticoid treatment (baseline) and repeated after 3 and 6 months treatment. Muscle strength and performance tests were performed at each visit. Baseline measures were compared with those from 14 healthy controls. Linear mixed models were used to test for change in patient measures over time. RESULTS At baseline, muscle SWV in patients was not significantly different from controls. With glucocorticoid treatment, there was a reduction in SWV in the leg but not the arm muscles. SWV decreased by a mean of 14% (range 8.3%-17.3%; P = .001) after 3 months and 18% (range 10.2%-25.3%; P < .001) after 6-months in the quadriceps and hamstrings during the resting position. The baseline, 3 and 6 months mean SWV (±SD) for the vastus lateralis were 1.62 ± 0.16 m/s, 1.40 ± 0.10 m/s and 1.31 ± 0.06 m/s, respectively (P < .001). In the patient group as a whole, there was no significant change in muscle strength. However, there were moderate correlations (r = .54-.69) between exhibiting weaker muscle strength at follow-up visits and a greater reduction in SWV. CONCLUSION Glucocorticoid therapy in patients with GCA was associated with a significant reduction in proximal leg muscle stiffness during the first 6 months. Future research should study a larger sample of patients for a longer duration to investigate if diminished muscle stiffness precedes signs of glucocorticoid-induced myopathy.
Collapse
Affiliation(s)
- Abdulrahman M Alfuraih
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Kharj, Saudi Arabia.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Philip O'Connor
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sarah Mackie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Richard J Wakefield
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
8
|
White A, Abbott H, Masi AT, Henderson J, Nair K. Biomechanical properties of low back myofascial tissue in younger adult ankylosing spondylitis patients and matched healthy control subjects. Clin Biomech (Bristol, Avon) 2018; 57:67-73. [PMID: 29936315 DOI: 10.1016/j.clinbiomech.2018.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ankylosing spondylitis is a degenerative and inflammatory rheumatologic disorder that primarily affects the spine. Delayed diagnosis leads to debilitating spinal damage. This study examines biomechanical properties of non-contracting (resting) human lower lumbar myofascia in ankylosing spondylitis patients and matched healthy control subjects. METHODS Biomechanical properties of stiffness, frequency, decrement, stress relaxation time, and creep were quantified from 24 ankylosing spondylitis patients (19 male, 5 female) and 24 age- and sex-matched control subjects in prone position on both sides initially and after 10 min rest. Concurrent surface electromyography measurements were performed to ensure resting state. Statistical analyses were conducted, and significance was set at p < 0.05. FINDINGS Decreased lumbar muscle elasticity (inverse of decrement) was primarily correlated with disease duration in ankylosing spondylitis subjects, whereas BMI was the primary correlate in control subjects. In ankylosing spondylitis and control groups, significant positive correlations were observed between the linear elastic properties of stiffness and frequency as well as between the viscoelastic parameters of stress relaxation time and creep. The preceding groups also showed significant negative correlations between the linear elastic and viscoelastic properties. INTERPRETATION Findings indicate that increased disease duration is associated with decreased tissue elasticity or myofascial degradation. Both ankylosing spondylitis and healthy subjects revealed similar correlations between the linear and viscoelastic properties which suggest that the disease does not directly alter their inherent interrelations. The novel results that stiffness is greater in AS than normal subjects, whereas decrement is significantly correlated with AS disease duration deserves further investigation of the biomechanical properties and their underlying mechanisms.
Collapse
Affiliation(s)
- Allison White
- Mechanical Engineering, Bradley University, Peoria, IL 61625, USA.
| | - Hannah Abbott
- Mechanical Engineering, Bradley University, Peoria, IL 61625, USA.
| | - Alfonse T Masi
- University of Illinois College of Medicine, Peoria, IL 61656, USA.
| | | | - Kalyani Nair
- Mechanical Engineering, Bradley University, Peoria, IL 61625, USA.
| |
Collapse
|
9
|
Schoenrock B, Zander V, Dern S, Limper U, Mulder E, Veraksitš A, Viir R, Kramer A, Stokes MJ, Salanova M, Peipsi A, Blottner D. Bed Rest, Exercise Countermeasure and Reconditioning Effects on the Human Resting Muscle Tone System. Front Physiol 2018; 9:810. [PMID: 30018567 PMCID: PMC6037768 DOI: 10.3389/fphys.2018.00810] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/08/2018] [Indexed: 01/11/2023] Open
Abstract
The human resting muscle tone (HRMT) system provides structural and functional support to skeletal muscle and associated myofascial structures (tendons, fascia) in normal life. Little information is available on changes to the HRMT in bed rest. A set of dynamic oscillation mechanosignals ([Hz], [N/m], log decrement, [ms]) collected and computed by a hand-held digital palpation device (MyotonPRO) were used to study changes in tone and in key biomechanical and viscoelastic properties in global and postural skeletal muscle tendons and fascia from a non-exercise control (CTR) and an exercise (JUMP) group performing reactive jumps on a customized sledge system during a 60 days head-down tilt bed rest (RSL Study 2015–2016). A set of baseline and differential natural oscillation signal patterns were identified as key determinants in resting muscle and myofascial structures from back, thigh, calf, patellar and Achilles tendon, and plantar fascia. The greatest changes were found in thigh and calf muscle and tendon, with little change in the shoulder muscles. Functional tests (one leg jumps, electromyography) showed only trends in relevant leg muscle groups. Increased anti-Collagen-I immunoreactivity found in CTR soleus biopsy cryosections was absent from JUMP. Results allow for a muscle health status definition after chronic disuse in bed rest without and with countermeasure, and following reconditioning. Findings improve our understanding of structural and functional responses of the HRMT to disuse and exercise, may help to guide treatment in various clinical settings (e.g., muscle tone disorders, neuro-rehabilitation), and promote monitoring of muscle health and training status in personalized sport and space medicine.
Collapse
Affiliation(s)
- Britt Schoenrock
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Vanja Zander
- Neuroscience Group, German Sports University, Cologne, Germany
| | - Sebastian Dern
- Neuroscience Group, German Sports University, Cologne, Germany
| | - Ulrich Limper
- Human Physiology, German Aerospace Center, Cologne, Germany
| | - Edwin Mulder
- Human Physiology, German Aerospace Center, Cologne, Germany
| | - Alar Veraksitš
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Ragnar Viir
- Ragnar Viir, Limited Partnership, Helsinki, Finland
| | - Andreas Kramer
- Neuromechanics Research Group, Sport Sciences, University of Konstanz, Konstanz, Germany
| | - Maria J Stokes
- Faculty of Health Sciences, University of Southampton, Southampton, United Kingdom
| | - Michele Salanova
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Berlin, Germany
| | | | - Dieter Blottner
- Vegetative Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Berlin, Germany
| |
Collapse
|