1
|
Larsen RJ, Gagoski B, Morton SU, Ou Y, Vyas R, Litt J, Grant PE, Sutton BP. Quantification of magnetic resonance spectroscopy data using a combined reference: Application in typically developing infants. NMR IN BIOMEDICINE 2021; 34:e4520. [PMID: 33913194 DOI: 10.1002/nbm.4520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Quantification of proton magnetic resonance spectroscopy (1 H-MRS) data is commonly performed by referencing the ratio of the signal from one metabolite, or metabolite group, to that of another, or to the water signal. Both approaches have drawbacks: ratios of two metabolites can be difficult to interpret because study effects may be driven by either metabolite, and water-referenced data must be corrected for partial volume and relaxation effects in the water signal. Here, we introduce combined reference (CRef) analysis, which compensates for both limitations. In this approach, metabolites are referenced to the combined signal of several reference metabolites or metabolite groups. The approach does not require the corrections necessary for water scaling and produces results that are less sensitive to the variation of any single reference signal, thereby aiding the interpretation of results. We demonstrate CRef analysis using 202 1 H-MRS acquisitions from the brains of 140 infants, scanned at approximately 1 and 3 months of age. We show that the combined signal of seven reference metabolites or metabolite groups is highly correlated with the water signal, corrected for partial volume and relaxation effects associated with cerebral spinal fluid. We also show that the combined reference signal is equally or more uniform across subjects than the reference signals from single metabolites or metabolite groups. We use CRef analysis to quantify metabolite concentration changes during the first several months of life in typically developing infants.
Collapse
Affiliation(s)
- Ryan J Larsen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah U Morton
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yangming Ou
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rutvi Vyas
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jonathan Litt
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bradley P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Knight-Scott J, Brennan P, Palasis S, Zhong X. Effect of repetition time on metabolite quantification in the human brain in 1
H MR spectroscopy at 3 tesla. J Magn Reson Imaging 2016; 45:710-721. [DOI: 10.1002/jmri.25403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jack Knight-Scott
- Department of Radiology; Children's Healthcare of Atlanta; Atlanta Georgia USA
| | | | - Susan Palasis
- Department of Radiology; Children's Healthcare of Atlanta; Atlanta Georgia USA
- Department of Radiology; Emory University; Atlanta Georgia USA
| | - Xiaodong Zhong
- MR R&D Collaborations; Siemens Healthcare; Atlanta Georgia USA
| |
Collapse
|
3
|
Knight-Scott J, Shanbhag DD, Dunham SA. A phase rotation scheme for achieving very short echo times with localized stimulated echo spectroscopy. Magn Reson Imaging 2005; 23:871-6. [PMID: 16275426 DOI: 10.1016/j.mri.2005.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 07/07/2005] [Indexed: 11/29/2022]
Abstract
In a single-voxel stimulated echo localization sequence in magnetic resonance spectroscopy, magnetic field gradients are inserted within the echo time (TE) to filter signals generated through coherence pathways other than that leading to the stimulated echo. There is a significant penalty for these gradients as they increase the minimum TE, thereby leading to significant signal loss from spin-spin relaxation and phase distortions in coupled spin systems. Here, an RF phase rotation technique is described for a stimulated echo localization sequence that allows removal of the gradients in the TE intervals and, subsequently, reduction of the minimum TE to only 6 ms. Experiments carried out on six healthy volunteers on a 1.5-T whole-body MR system show a significant signal increase in the metabolite concentrations when measured with a 6-ms TE (N-acetyl-aspartate, 12%, P=.002; creatine, 15%, P=.04; and glutamate+glutamine, 92%, P=.02) compared to concentrations measured with data collected at TEs of 15 and 20 ms.
Collapse
Affiliation(s)
- Jack Knight-Scott
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA 22908-0759, USA.
| | | | | |
Collapse
|