1
|
Heikkinen H, Kilpeläinen I, Heikkinen S. Convection compensation in 3D iDOSY-HMBC 1H- 13C-correlation experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 356:107575. [PMID: 39492220 DOI: 10.1016/j.jmr.2023.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
3D iDOSY-HMBC (3D incorporated Diffusion Ordered SpectroscopY-Heteronuclear Multiple Bond Correlation) pulse sequences were modified to incorporate convection compensation element. No additional delays were required, and convection compensation was directly constructed within the existing delay periods in 3D iDOSY-HMBC pulse sequence. Convection compensation was achieved by pulsed field gradient double echo, thus avoiding the intensity loss normally related to stimulated echo methods. The incorporated convection compensation element improves the usability of 3D iDOSY-HMBC. In case of elevated temperatures, thermal convection leads to loss of resolution in DOSY-dimension or even to severe decrease of signal intensity, thus making convection uncompensated 3D iDOSY-HMBC infeasible. Aforementioned problems can be circumvented via utilization of the presented convection compensated 3D iDOSY-HMBC-versions.
Collapse
Affiliation(s)
- Harri Heikkinen
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Ilkka Kilpeläinen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Sami Heikkinen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.
| |
Collapse
|
2
|
Guo F, Zhou J, Wang J, Qian K, Qu H. A molecular dynamics study of phospholipid membrane electroporation induced by bipolar pulses with different intervals. Phys Chem Chem Phys 2023; 25:14096-14103. [PMID: 37161819 DOI: 10.1039/d2cp04637g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mechanism of changes in cell electroporation (EP) during the intervals of bipolar pulses is still unclear, and few studies have investigated the effect of the intervals at the molecular level. In this study, EP induced by bipolar pulses (BP) with different intervals was investigated using all-atom molecular dynamics simulations. Firstly, EP was formed during the positive pulses of 2 ns and 0.5 V nm-1, then the effects of various intervals of 0, 1, 5, and 10 ns on EP evolution were investigated, and the dynamic changes of different degrees of EP induced by the following negative pulses of 2 ns and 0.5 V nm-1 were analyzed. The elimination effect of intervals was determined and it was related to the degrees of EP and the time of intervals. At the last moment of the intervals the phospholipid membrane was classified and quantitatively defined in three states according to the degrees of EP, namely, Resealing, Destabilizing and Retaining states. These states appeared due to the combined effect of both the positive pulse and the interval, and the states represent the degrees of EP which had different responses after applying the negative pulse. These results can improve our understanding of the fundamental mechanism of BP-induced EP.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Jiong Zhou
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Ji Wang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Kun Qian
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Hongchun Qu
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
3
|
Devaurs D, Antunes DA, Borysik AJ. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:215-237. [PMID: 35077179 DOI: 10.1021/jasms.1c00328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.
Collapse
Affiliation(s)
- Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77005, United States
| | - Antoni J Borysik
- Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
4
|
Meikle T, Keizer DW, Separovic F, Yao S. Water diffusion in complex systems measured by PGSE NMR using chemical shift selective stimulated echo: Elimination of magnetization exchange effects. J Chem Phys 2021; 155:224203. [PMID: 34911323 DOI: 10.1063/5.0073704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interpretation of molecular translational diffusion as measured by pulsed gradient spin-echo NMR (PGSE NMR) can be complicated by the presence of chemical exchange and/or dipolar cross-relaxation (including relayed cross-relaxation via spin diffusion). The magnitude of influence depends on the kinetics of exchange and/or dipolar cross-relaxation present within the system as well as the PGSE NMR sequences chosen for measurements. First, we present an exchange induced zero-crossing phenomenon for signal attenuation of water in lipidic cubic phases (formed by a mixture of monoolein and water) in the presence of pulsed gradients observed using a standard STimulated Echo (STE) sequence. This magnetization exchange induced zero-crossing phenomenon, a pseudo-negative diffraction-like feature, resembles that reported previously for restricted diffusion when locally anisotropic pores are polydisperse or randomly oriented. We then demonstrate the elimination of these exchange and/or dipolar cross-relaxation induced effects with the use of a chemical shift selective STE (CHESS-STE) sequence, adapted from the previously reported band-selective short transient STE sequence, along with results obtained from the bipolar pulse pair STE sequence for comparison. The CHESS-STE sequence introduced here represents a generic form of PGSE NMR sequences for obtaining water diffusion coefficients free from the influence of exchange and/or dipolar cross-relaxation in complex systems. It has potential applications in measuring translational diffusion of water in biopolymer mixtures as well as probing the microscopic structure in materials via water restricted diffusion measured by PGSE NMR, particularly when the potential presence of exchange/cross-relaxation is of concern.
Collapse
Affiliation(s)
- Thomas Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Perea-Buceta J, Rico Del Cerro D, Kilpeläinen I, Heikkinen S. Incorporated diffusion ordered heteronuclear multiple bond correlation spectroscopy, 3D iDOSY-HMBC. Merging of diffusion delay with long polarization transfer delay of HMBC. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106892. [PMID: 33387959 DOI: 10.1016/j.jmr.2020.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
3D iDOSY-HMBC pulse sequences allow the simplification of HMBC data of mixtures via separation in the diffusion domain. The presented methods utilize incorporated DOSY approach, iDOSY, where the existing delays of the basic pulse sequence are utilized for diffusion attenuation. In the simplest form of the proposed 3D iDOSY-HMBC sequences, no extra delays or RF-pulses were required, only two diffusion gradients were added within HMBC polarization transfer delay.
Collapse
Affiliation(s)
- Jesus Perea-Buceta
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Daniel Rico Del Cerro
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Ilkka Kilpeläinen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Sami Heikkinen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.
| |
Collapse
|
6
|
Escobar L, Li YS, Cohen Y, Yu Y, Rebek J, Ballester P. Kinetic Stabilities and Exchange Dynamics of Water-Soluble Bis-Formamide Caviplexes Studied Using Diffusion-Ordered NMR Spectroscopy (DOSY). Chemistry 2020; 26:8220-8225. [PMID: 32167599 DOI: 10.1002/chem.202000781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 11/10/2022]
Abstract
A deep cavitand binds long-chain trans,trans- and trans,cis-bis-formamide isomers in water solution giving a pair of caviplexes in a ca. 60:40 ratio. Both caviplexes display in/out guest exchange dynamics that are slow on the 1 H NMR chemical shift timescale, but fast on the EXSY timescale. We apply diffusion-ordered NMR spectroscopy (DOSY) to characterize the caviplexes. On the diffusion timescale, the guest in/out exchange processes feature intermediate dynamics allowing the assessment of their kinetic stabilities. We found that the trans,cis-bis-formamide isomers form kinetically more stable caviplexes than the trans,trans-counterparts. We also show that the kinetic stabilities of the bis-formamide caviplexes relate well with their relative thermodynamic stabilities. Fortunately, the tuning of the DOSY parameters allowed the observation of the exchange dynamics as slow processes on the experiment timescale.
Collapse
Affiliation(s)
- Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Universitat Rovira i Virgili (URV), Departament de Química Analítica i Química Orgánica, c/Marcel lí Domingo 1, 43007, Tarragona, Spain
| | - Yong-Sheng Li
- Shanghai University, Center for Supramolecular Chemistry and Catalysis, Shang-Da Road 99, 200444, Shanghai, China.,Shanghai University, Department of Chemistry, College of Science, Shang-Da Road 99, 200444, Shanghai, China
| | - Yoram Cohen
- Tel Aviv University, School of Chemistry, The Sacker Faculty of Exact Sciences, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yang Yu
- Shanghai University, Center for Supramolecular Chemistry and Catalysis, Shang-Da Road 99, 200444, Shanghai, China.,Shanghai University, Department of Chemistry, College of Science, Shang-Da Road 99, 200444, Shanghai, China
| | - Julius Rebek
- Shanghai University, Center for Supramolecular Chemistry and Catalysis, Shang-Da Road 99, 200444, Shanghai, China.,Shanghai University, Department of Chemistry, College of Science, Shang-Da Road 99, 200444, Shanghai, China.,The Scripps Research Institute, Skaggs Institute for Chemical Biology, North Torrey Pines Road 10550, 92037, La Jolla, CA, USA.,The Scripps Research Institute, Department of Chemistry, North Torrey Pines Road 10550, 92037, La Jolla, CA, USA
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
7
|
Lee J, Park SH, Cavagnero S, Lee JH. High-Resolution Diffusion Measurements of Proteins by NMR under Near-Physiological Conditions. Anal Chem 2020; 92:5073-5081. [PMID: 32163276 DOI: 10.1021/acs.analchem.9b05453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring the translational diffusion of proteins under physiological conditions can be very informative, especially when multiple diffusing species can be distinguished. Diffusion NMR or diffusion-ordered spectroscopy (DOSY) is widely used to study molecular diffusion, where protons are used as probes, which can be further edited by the proton-attached heteronuclei to provide additional resolution. For example, the combination of the backbone amide protons (1HN) to measure diffusion with the well-resolved 1H/15N correlations has afforded high-resolution DOSY experiments. However, significant amide-water proton exchange at physiological temperature and pH can affect the accuracy of diffusion data or cause complete loss of DOSY signals. Although aliphatic protons do not exchange with water protons, and thus are potential probes to measure diffusion rates, 1H/13C correlations are often in spectral overlap or masked by the water signal, which hampers the use of these correlations. In this report, a method was developed that separates the nuclei used for diffusion (α protons, 1Hα) and those used for detection (1H/15N and 13C'/15N correlations). This approach enables high-resolution diffusion measurements of polypeptides in a mixture of biomolecules, thereby providing a powerful tool to investigate coexisting species under physiologically relevant conditions.
Collapse
Affiliation(s)
- Jongchan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sho Hee Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Nepravishta R, Yu B, Iwahara J. Hydrogen-exchange kinetics studied through analysis of self-decoupling of nuclear magnetic resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106687. [PMID: 31982802 PMCID: PMC7067644 DOI: 10.1016/j.jmr.2020.106687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Hydrogen exchange between solute and water molecules occurs across a wide range of timescales. Rapid hydrogen-exchange processes can effectively diminish 1H-15N scalar couplings. We demonstrate that the self-decoupling of 15N nuclear magnetic resonance can allow quantitative investigations of hydrogen exchange on a micro- to millisecond timescale, which is relatively difficult to analyze with other methods. Using a Liouvillian matrix incorporating hydrogen exchange as a mechanism for scalar relaxation, the hydrogen exchange rate can be determined from 15N NMR line shapes recorded with and without 1H decoupling. Self-decoupling offers a simple approach to analyze the kinetics of hydrogen exchange in a wide range of timescale.
Collapse
Affiliation(s)
- Ridvan Nepravishta
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA.
| |
Collapse
|
9
|
Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers. Sci Rep 2019; 9:19991. [PMID: 31882959 PMCID: PMC6934565 DOI: 10.1038/s41598-019-56458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Ubiquitylation is an eminent posttranslational modification referring to the covalent attachment of single ubiquitin molecules or polyubiquitin chains to a target protein dictating the fate of such labeled polypeptide chains. Here, we have biochemically produced artificially Lys11-, and Lys27-, and Lys63-linked ubiquitin dimers based on click-chemistry generating milligram quantities in high purity. We show that the artificial linkage used for the conjugation of two ubiquitin moieties represents a fully reliable surrogate of the natural isopeptide bond by acquiring highly resolved nuclear magnetic resonance (NMR) spectroscopic data including ligand binding studies. Extensive coarse grained and atomistic molecular dynamics (MD) simulations allow to extract structures representing the ensemble of domain-domain conformations used to verify the experimental data. Advantageously, this methodology does not require individual isotopic labeling of both ubiquitin moieties as NMR data have been acquired on the isotopically labeled proximal moiety and complementary MD simulations have been used to fully interpret the experimental data in terms of domain-domain conformation. This combined approach intertwining NMR spectroscopy with MD simulations makes it possible to describe the conformational space non-canonically Lys11-, and Lys27-linked ubiquitin dimers occupy in a solution averaged ensemble by taking atomically resolved information representing all residues in ubiquitin dimers into account.
Collapse
|
10
|
Dal Poggetto G, Castañar L, Foroozandeh M, Kiraly P, Adams RW, Morris GA, Nilsson M. Unexploited Dimension: New Software for Mixture Analysis by 3D Diffusion-Ordered NMR Spectroscopy. Anal Chem 2018; 90:13695-13701. [DOI: 10.1021/acs.analchem.8b04093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guilherme Dal Poggetto
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Laura Castañar
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mohammadali Foroozandeh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Peter Kiraly
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ralph W. Adams
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gareth A. Morris
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mathias Nilsson
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
11
|
Assemat G, Gouilleux B, Bouillaud D, Farjon J, Gilard V, Giraudeau P, Malet-Martino M. Diffusion-ordered spectroscopy on a benchtop spectrometer for drug analysis. J Pharm Biomed Anal 2018; 160:268-275. [DOI: 10.1016/j.jpba.2018.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 12/18/2022]
|
12
|
Yao S, Meikle TG, Sethi A, Separovic F, Babon JJ, Keizer DW. Measuring translational diffusion of 15N-enriched biomolecules in complex solutions with a simplified 1H- 15N HMQC-filtered BEST sequence. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:891-902. [PMID: 29785510 DOI: 10.1007/s00249-018-1311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/12/2018] [Accepted: 05/16/2018] [Indexed: 01/29/2023]
Abstract
Pulsed-field gradient nuclear magnetic resonance has seen an increase in applications spanning a broad range of disciplines where molecular translational diffusion properties are of interest. The current study introduces and experimentally evaluates the measurement of translational diffusion coefficients of 15N-enriched biomolecules using a 1H-15N HMQC-filtered band-selective excitation short transient (BEST) sequence as an alternative to the previously described SOFAST-XSTE sequence. The results demonstrate that accurate translational diffusion coefficients of 15N-labelled peptides and proteins can be obtained using this alternative 1H-15N HMQC-filtered BEST sequence which is implementable on NMR spectrometers equipped with probes fitted with a single-axis field gradient, including most cryoprobes dedicated to bio-NMR. The sequence is of potential use for direct quantification of protein or peptide translational diffusion within complex systems, such as in mixtures of macromolecules, crowded solutions, membrane-mimicking media and in bicontinuous cubic phases, where conventional sequences may not be readily applicable due to the presence of intense signals arising from sources other than the protein or peptide under investigation.
Collapse
Affiliation(s)
- Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ashish Sethi
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
13
|
Khirich G, Holliday MJ, Lin JC, Nandy A. Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy. J Phys Chem B 2018; 122:2368-2378. [PMID: 29376350 DOI: 10.1021/acs.jpcb.7b10849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-dimensional heteronuclear relaxation dispersion NMR spectroscopy at 13C natural abundance successfully characterized the dynamics of the hydrogen-deuterium exchange reaction occurring at the Nε position in l-arginine by monitoring Cδ in varying amounts of D2O. A small equilibrium isotope effect was observed and quantified, corresponding to ΔG = -0.14 kcal mol-1. A bimolecular rate constant of kD = 5.1 × 109 s-1 M-1 was determined from the pH*-dependence of kex (where pH* is the direct electrode reading of pH in 10% D2O and kex is the nuclear spin exchange rate constant), consistent with diffusion-controlled kinetics. The measurement of ΔG serves to bridge the millisecond time scale lifetimes of the detectable positively charged arginine species with the nanosecond time scale lifetime of the nonobservable low-populated neutral arginine intermediate species, thus allowing for characterization of the equilibrium lifetimes of the various arginine species in solution as a function of fractional solvent deuterium content. Despite the system being in fast exchange on the chemical shift time scale, the magnitude of the secondary isotope shift due to the exchange reaction at Nε was accurately measured to be 0.12 ppm directly from curve-fitting D2O-dependent dispersion data collected at a single static field strength. These results indicate that relaxation dispersion NMR spectroscopy is a robust and general method for studying base-catalyzed hydrogen-deuterium exchange chemistry at equilibrium.
Collapse
Affiliation(s)
- Gennady Khirich
- Protein Analytical Chemistry, ‡Early Discovery Biochemistry, and §Late Stage Pharmaceutical Development, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael J Holliday
- Protein Analytical Chemistry, ‡Early Discovery Biochemistry, and §Late Stage Pharmaceutical Development, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jasper C Lin
- Protein Analytical Chemistry, ‡Early Discovery Biochemistry, and §Late Stage Pharmaceutical Development, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Aditya Nandy
- Protein Analytical Chemistry, ‡Early Discovery Biochemistry, and §Late Stage Pharmaceutical Development, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
14
|
Segredo-Morales E, Martin-Pastor M, Salas A, Évora C, Concheiro A, Alvarez-Lorenzo C, Delgado A. Mobility of Water and Polymer Species and Rheological Properties of Supramolecular Polypseudorotaxane Gels Suitable for Bone Regeneration. Bioconjug Chem 2018; 29:503-516. [DOI: 10.1021/acs.bioconjchem.7b00823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elisabet Segredo-Morales
- Department of Chemical
Engineering and Pharmaceutical Technology, Institute of Biomedical
Technologies (ITB), Center for Biomedical Research of the Canary Islands
(CIBICAN), Universidad de La Laguna, 30200 La Laguna, Spain
| | | | - Ana Salas
- Departamente Bioquímica, Microbiología,
Biología Celular y Genética, Instituto Universitario
de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38207 La Laguna, Spain
| | - Carmen Évora
- Department of Chemical
Engineering and Pharmaceutical Technology, Institute of Biomedical
Technologies (ITB), Center for Biomedical Research of the Canary Islands
(CIBICAN), Universidad de La Laguna, 30200 La Laguna, Spain
| | | | | | - Araceli Delgado
- Department of Chemical
Engineering and Pharmaceutical Technology, Institute of Biomedical
Technologies (ITB), Center for Biomedical Research of the Canary Islands
(CIBICAN), Universidad de La Laguna, 30200 La Laguna, Spain
| |
Collapse
|
15
|
Devaurs D, Antunes DA, Papanastasiou M, Moll M, Ricklin D, Lambris JD, Kavraki LE. Coarse-Grained Conformational Sampling of Protein Structure Improves the Fit to Experimental Hydrogen-Exchange Data. Front Mol Biosci 2017; 4:13. [PMID: 28344973 PMCID: PMC5344923 DOI: 10.3389/fmolb.2017.00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
Monitoring hydrogen/deuterium exchange (HDX) undergone by a protein in solution produces experimental data that translates into valuable information about the protein's structure. Data produced by HDX experiments is often interpreted using a crystal structure of the protein, when available. However, it has been shown that the correspondence between experimental HDX data and crystal structures is often not satisfactory. This creates difficulties when trying to perform a structural analysis of the HDX data. In this paper, we evaluate several strategies to obtain a conformation providing a good fit to the experimental HDX data, which is a premise of an accurate structural analysis. We show that performing molecular dynamics simulations can be inadequate to obtain such conformations, and we propose a novel methodology involving a coarse-grained conformational sampling approach instead. By extensively exploring the intrinsic flexibility of a protein with this approach, we produce a conformational ensemble from which we extract a single conformation providing a good fit to the experimental HDX data. We successfully demonstrate the applicability of our method to four small and medium-sized proteins.
Collapse
Affiliation(s)
- Didier Devaurs
- Department of Computer Science, Rice UniversityHouston, TX, USA
| | | | - Malvina Papanastasiou
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Broad Institute of MIT & HarvardCambridge, MA, USA
| | - Mark Moll
- Department of Computer Science, Rice UniversityHouston, TX, USA
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Pharmaceutical Sciences, University of BaselBasel, Switzerland
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | | |
Collapse
|
16
|
Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2910-7. [DOI: 10.1016/j.bbamem.2015.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
|
17
|
Sinnaeve D. Simultaneous solvent and J-modulation suppression in PGSTE-based diffusion experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 245:24-30. [PMID: 24926914 DOI: 10.1016/j.jmr.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/25/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
The most favourable solvent suppression methods that have been applied to PGSTE experiments for the measurement of diffusion are WATERGATE and excitation sculpting. However, both methods come with significant J-modulation line-shape distortions on multiplets, a phenomenon that is known to be of particular concern for DOSY data processing. Here, two new PGSTE experiments are proposed that suppress both the solvent peak and J-modulation based on the perfect echo WATERGATE sequence. This allows narrow suppression bandwidths and thus measurement of diffusion on peaks close to the solvent peak. Both sequences perform admirably and the better option depends on the priority one puts on the quality of the solvent suppression or signal loss due to T2 weighting. Gradient-based solvent suppression in PGSTE experiments can often be compromised by the variable, diffusion-encoding gradient pulses. Special emphasis is put on how to maximise the robustness of the solvent suppression.
Collapse
Affiliation(s)
- Davy Sinnaeve
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Gent, Belgium.
| |
Collapse
|
18
|
Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:331-9. [DOI: 10.1007/s00249-014-0965-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
19
|
Aguilar JA, Adams RW, Nilsson M, Morris GA. Suppressing exchange effects in diffusion-ordered NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 238:16-19. [PMID: 24263085 DOI: 10.1016/j.jmr.2013.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
In diffusion-ordered spectroscopy (DOSY) the aim is to separate signals from different molecular species according to their different diffusion coefficients. Each species has its individual diffusion coefficient (that may accidentally coincide with that of another species, e.g. if they are of very similar size). In exchanging systems, however, there is a serious complication in that the apparent diffusion coefficient of an exchanging signal will be a compromise that depends, among other factors, on the diffusion coefficients of the exchange partners and the rate of exchange between them. The DOSY spectrum will be much harder to interpret and can often give the appearance of extra (spurious) components in the mixture. Here a new and surprisingly simple experiment is described that suppresses the effects of exchange on apparent diffusion coefficients, restoring the simplicity of interpretation enjoyed by non-exchanging systems.
Collapse
Affiliation(s)
- Juan A Aguilar
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - Ralph W Adams
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - Mathias Nilsson
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom; Dept. of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| | - Gareth A Morris
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
20
|
Varghese S, Yang F, Pacheco V, Wrede K, Medvedev A, Ogata H, Knipp M, Heise H. Expression, purification, and solid-state NMR characterization of the membrane binding heme protein nitrophorin 7 in two electronic spin states. Biochemistry 2013; 52:7031-40. [PMID: 24033104 DOI: 10.1021/bi401020t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nitrophorins (NPs) comprise a group of NO transporting ferriheme b proteins found in the saliva of the blood sucking insect Rhodnius prolixus . In contrast to other nitrophorins (NP1-4), the recently identified membrane binding isoform NP7 tends to form oligomers and precipitates at higher concentrations in solution. Hence, solid-state NMR (ssNMR) was employed as an alternative method to gain structural insights on the precipitated protein. We report the expression and purification of (13)C,(15)N isotopically labeled protein together with the first ssNMR characterization of NP7. Because the size of NP7 (21 kDa) still provides a challenge for ssNMR, the samples were reverse labeled with Lys and Val to reduce the number of crosspeaks in two-dimensional spectra. The two electronic spin states with S = 1/2 and S = 0 at the ferriheme iron were generated by the complexation with imidazole and NO, respectively. ssNMR spectra of both forms are well resolved, which allows for sequential resonance assignments of 22 residues. Importantly, the ssNMR spectra demonstrate that aggregation does not affect the protein fold. Comparison of the spectra of the two electronic spin states allows the determination of paramagnetically shifted cross peaks due to pseudocontact shifts, which assists the assignment of residues close to the heme center.
Collapse
Affiliation(s)
- Sabu Varghese
- ICS-6 Institute of Complex Systems-Structural Biochemistry, Forschungszentrum Jülich , D-2425 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pagès G, Dvinskikh SV, Furó I. Suppressing magnetization exchange effects in stimulated-echo diffusion experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:35-43. [PMID: 23838524 DOI: 10.1016/j.jmr.2013.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
Exchange of nuclear magnetization between spin pools, either by chemical exchange or by cross-relaxation or both, has a significant influence on the signal attenuation in stimulated-echo-type pulsed field gradient experiments. Hence, in such cases the obtained molecular self-diffusion coefficients can carry a large systematic error. We propose a modified stimulated echo pulse sequence that contains T2-filters during the z-magnetization store period. We demonstrate, using a common theoretical description for chemical exchange and cross-relaxation, that these filters suppress the effects of exchange on the diffusional decay in that frequent case where one of the participating spin pools is immobile and exhibits a short T2. We demonstrate the performance of this experiment in an agarose/water gel. We posit that this new experiment has advantages over other approaches hitherto used, such as that consisting of measuring separately the magnetization exchange rate, if suitable by Goldman-Shen type experiments, and then correcting for exchange effects within the framework of a two-site exchange model. We also propose experiments based on selective decoupling and applicable in systems with no large T2 difference between the different spin pools.
Collapse
Affiliation(s)
- Guilhem Pagès
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| | | | | |
Collapse
|
22
|
Thakur A, Chandra K, Dubey A, D'Silva P, Atreya HS. Rapid Characterization of Hydrogen Exchange in Proteins. Angew Chem Int Ed Engl 2013; 52:2440-3. [DOI: 10.1002/anie.201206828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/03/2012] [Indexed: 11/06/2022]
|
23
|
Thakur A, Chandra K, Dubey A, D'Silva P, Atreya HS. Rapid Characterization of Hydrogen Exchange in Proteins. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201206828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Jurt S, Zerbe O. A study on the influence of fast amide exchange on the accuracy of (15)N relaxation rate constants. JOURNAL OF BIOMOLECULAR NMR 2012; 54:389-400. [PMID: 23143279 DOI: 10.1007/s10858-012-9682-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
(15)N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R (1) and R (2). Here, the extent of these errors is rigorously examined. Theoretical considerations reveal that even when saturation effects are absent, H/D exchange will easily result in significant deviations from the true values. In particular overestimations of up to 10 % in R (1) and up to 5 % in R (2) are observed. An alternative scheme for fitting the relaxation data to the corresponding exponentials is presented that in the best cases not only delivers more accurate relaxation rates but also allows extracting estimates for the exchange rates. The theoretical computations were tested and verified for the case of ubiquitin.
Collapse
Affiliation(s)
- Simon Jurt
- Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | | |
Collapse
|
25
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
26
|
Amon S, Trelle MB, Jensen ON, Jørgensen TJD. Spatially resolved protein hydrogen exchange measured by subzero-cooled chip-based nanoelectrospray ionization tandem mass spectrometry. Anal Chem 2012; 84:4467-73. [PMID: 22536891 DOI: 10.1021/ac300268r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mass spectrometry has become a valuable method for studying structural dynamics of proteins in solution by measuring their backbone amide hydrogen/deuterium exchange (HDX) kinetics. In a typical exchange experiment one or more proteins are incubated in deuterated buffer at physiological conditions. After a given period of deuteration, the exchange reaction is quenched by acidification (pH 2.5) and cooling (0 °C) and the deuterated protein (or a digest thereof) is analyzed by mass spectrometry. The unavoidable loss of deuterium (back-exchange) that occurs under quench conditions is undesired as it leads to loss of information. Here we describe the successful application of a chip-based nanoelectrospray ionization mass spectrometry top-down fragmentation approach based on cooling to subzero temperature (-15 °C) which reduces the back-exchange at quench conditions to very low levels. For example, only 4% and 6% deuterium loss for fully deuterated ubiquitin and β(2)-microglobulin were observed after 10 min of back-exchange. The practical value of our subzero-cooled setup for top-down fragmentation HDX analyses is demonstrated by electron-transfer dissociation of ubiquitin ions under carefully optimized mass spectrometric conditions where gas-phase hydrogen scrambling is negligible. Our results show that the known dynamic behavior of ubiquitin in solution is accurately reflected in the deuterium contents of the fragment ions.
Collapse
Affiliation(s)
- Sabine Amon
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | |
Collapse
|
27
|
Shukla M, Dorai K. Resolving overlaps in diffusion encoded spectra using band-selective pulses in a 3D BEST-DOSY experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 213:69-75. [PMID: 21937251 DOI: 10.1016/j.jmr.2011.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 08/10/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
A novel diffusion-edited 3D NMR experiment that incorporates a BEST-HMQC pulse sequence in its implementation is presented. Heteronuclear 3D DOSY NMR experiments are useful in elucidating the diffusion coefficients of individual constituents of a mixture, especially in cases where the proton NMR 2D DOSY spectra show considerable overlap. The present 3D BEST-DOSY pulse sequence provides a more sensitive and less time-consuming alternative to standard 3D HMQC-DOSY experiments. Cleanly separated subspectra of individual mixture components are obtained, leading to the determination of diffusion coefficients with better accuracy. The feasibility of the technique is demonstrated on a mixture of amino acids, on a mixture of small molecules with similar diffusion coefficients, and on a complex mixture with large dynamic range (commercial gasoline). The implications of using adiabatic decoupling schemes and band-selective shaped pulses for selective BEST-DOSY experiments on proteins are also discussed.
Collapse
Affiliation(s)
- Matsyendranath Shukla
- Department of Physics, Indian Institute of Science Education & Research (IISER) Mohali, Chandigarh 160 019, India.
| | | |
Collapse
|
28
|
Sakakura M, Hadziselimovic A, Wang Z, Schey KL, Sanders CR. Structural basis for the Trembler-J phenotype of Charcot-Marie-Tooth disease. Structure 2011; 19:1160-9. [PMID: 21827951 DOI: 10.1016/j.str.2011.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
Abstract
Mutations in peripheral myelin protein 22 (PMP22) can result in the common peripheral neuropathy Charcot-Marie-Tooth disease (CMTD). The Leu16Pro mutation in PMP22 results in misassembly of the protein, which causes the Trembler-J (TrJ) disease phenotype. Here we elucidate the structural defects present in a partially folded state of TrJ PMP22 that are decisive in promoting CMTD-causing misfolding. In this state, transmembrane helices 2-4 (TM2-4) form a molten globular bundle, while transmembrane helix 1 (TM1) is dissociated from this bundle. The TrJ mutation was seen to profoundly disrupt the TM1 helix, resulting in increased backbone dynamics and changes in the tertiary interactions of TM1 with the PMP22 TM2-4 core in the folded state. Consequently, TM1 undergoes enhanced dissociation from the other transmembrane segments in TrJ PMP22, becoming available for recognition and sequestration by protein-folding quality control, which leads to loss of function and toxic accumulation of aggregates that result in CMTD.
Collapse
Affiliation(s)
- Masayoshi Sakakura
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-8725, USA
| | | | | | | | | |
Collapse
|
29
|
Shaw BF, Schneider GF, Arthanari H, Narovlyansky M, Moustakas D, Durazo A, Wagner G, Whitesides GM. Complexes of native ubiquitin and dodecyl sulfate illustrate the nature of hydrophobic and electrostatic interactions in the binding of proteins and surfactants. J Am Chem Soc 2011; 133:17681-95. [PMID: 21939262 DOI: 10.1021/ja205735q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A previous study, using capillary electrophoresis (CE) [J. Am. Chem. Soc. 2008, 130, 17384-17393], reported that six discrete complexes of ubiquitin (UBI) and sodium dodecyl sulfate (SDS) form at different concentrations of SDS along the pathway to unfolding of UBI in solutions of SDS. One complex (which formed between 0.8 and 1.8 mM SDS) consisted of native UBI associated with approximately 11 molecules of SDS. The current study used CE and (15)N/(13)C-(1)H heteronuclear single quantum coherence (HSQC) NMR spectroscopy to identify residues in folded UBI that associate specifically with SDS at 0.8-1.8 mM SDS, and to correlate these associations with established biophysical and structural properties of this well-characterized protein. The ability of the surface charge and hydrophobicity of folded UBI to affect the association with SDS (at concentrations below the CMC) was studied, using CE, by converting lys-ε-NH(3)(+) to lys-ε-NHCOCH(3) groups. According to CE, the acetylation of lysine residues inhibited the binding of 11 SDS ([SDS] < 2 mM) and decreased the number of complexes of composition UBI-(NHAc)(8)·SDS(n) that formed on the pathway of unfolding of UBI-(NHAc)(8) in SDS. A comparison of (15)N-(1)H HSQC spectra at 0 mM and 1 mM SDS with calculated electrostatic surface potentials of folded UBI (e.g., solutions to the nonlinear Poisson-Boltzmann (PB) equation) suggested, however, that SDS binds preferentially to native UBI at hydrophobic residues that are formally neutral (i.e., Leu and Ile), but that have positive electrostatic surface potential (as predicted from solutions to nonlinear PB equations); SDS did not uniformly interact with residues that have formal positive charge (e.g., Lys or Arg). Cationic functional groups, therefore, promote the binding of SDS to folded UBI because these groups exert long-range effects on the positive electrostatic surface potential (which extend beyond their own van der Waals radii, as predicted from PB theory), and not because cationic groups are necessarily the site of ionic interactions with sulfate groups. Moreover, SDS associated with residues in native UBI without regard to their location in α-helix or β-sheet structure (although residues in hydrogen-bonded loops did not bind SDS). No correlation was observed between the association of an amino acid with SDS and the solvent accessibility of the residue or its rate of amide H/D exchange. This study establishes a few (of perhaps several) factors that control the simultaneous molecular recognition of multiple anionic amphiphiles by a folded cytosolic protein.
Collapse
Affiliation(s)
- Bryan F Shaw
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yoshii N, Okamura E. Binding of hydrophobic fluorinated bisphenol A to large unilamellar vesicles of egg phosphatidylcholine. J Phys Chem B 2011; 115:11074-80. [PMID: 21859127 DOI: 10.1021/jp112149q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of membrane binding and dissociation of fluorinated bisphenol A (FBPA, (CF(3))(2)C(C(6)H(4)OH)(2)) is quantified by 1D (19)F NMR spectra in situ. Although the bound and free components are in fast exchange, the rate constants and bound fraction is nonetheless determined from an analysis of the spectra. The analysis relies on the expression of 1D NMR signal intensity by a set of Bloch equations with exchange terms. The time span of the binding and dissociation of hydrophobic FBPA to large unilamellar vesicles of egg phosphatidylcholine (EPC) is 10(-3) to 10(-2) s. The rates of FBPA binding and dissociation are kept constant per EPC molecule even at different concentrations of the vesicle. The free energy of FBPA transfer is -20 ± 2 kJ/mol at 303 K. The process is entropy-driven. The efficiency of FBPA transfer is enhanced by a factor of 7 × 10(4), as compared with the hydrophilic 5-fluorouracil.
Collapse
Affiliation(s)
- Noriyuki Yoshii
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1, Kamiohno, Himeji 670-8524, Japan
| | | |
Collapse
|
31
|
Jahr N, Fiedler E, Günther R, Hofmann HJ, Berger S. NH exchange in point mutants of human ubiquitin. Int J Biol Macromol 2011; 49:154-60. [DOI: 10.1016/j.ijbiomac.2011.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 11/16/2022]
|
32
|
Augustyniak R, Ferrage F, Paquin R, Lequin O, Bodenhausen G. Methods to determine slow diffusion coefficients of biomolecules: applications to Engrailed 2, a partially disordered protein. JOURNAL OF BIOMOLECULAR NMR 2011; 50:209-218. [PMID: 21603954 DOI: 10.1007/s10858-011-9510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/27/2011] [Indexed: 05/30/2023]
Abstract
We present new NMR methods to measure slow translational diffusion coefficients of biomolecules. Like the heteronuclear stimulated echo experiment (XSTE), these new methods rely on the storage of information about spatial localization during the diffusion delay as longitudinal polarization of nuclei with long T(1) such as nitrogen-15. The new BEST-XSTE sequence combines features of Band-selective Excitation Short-Transient (BEST) and XSTE methods. By avoiding the saturation of all protons except those of amide groups, one can increase the sensitivity by 45% in small proteins. The new experiment which combines band-Selective Optimized Flip-Angle Short-Transient with XSTE (SOFAST-XSTE) offers an alternative when very short recovery delays are desired. A modification of the HSQC-edited version of the XSTE experiment offers enhanced sensitivity and access to higher resolution in the indirect dimension. These new methods have been applied to detect changes in diffusion coefficients due to dimerization or proteolysis of Engrailed 2, a partially disordered protein.
Collapse
|
33
|
Hairpin conformation of an 11-mer peptide. Bioorg Med Chem 2011; 19:3497-501. [PMID: 21543228 DOI: 10.1016/j.bmc.2011.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 11/23/2022]
|
34
|
Kagan G, Li W, Li D, Hopson R, Williard PG. Characterization of dimeric chiral lithium amide structures derived from N-isopropyl-O- triisopropylsilyl valinol. J Am Chem Soc 2011; 133:6596-602. [PMID: 21486016 DOI: 10.1021/ja109041z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dimeric structure is characterized for a chiral amide base complex consisting of an (S)-N-isopropyl-O-triisopropylsilyl valinol ligand and lithium. The complex is characterized by a variety of NMR techniques, including multinuclear one- and two-dimensional NMR experiments and diffusion-ordered NMR spectroscopy (DOSY) as well as diffusion coefficient-formula weight (D-fw) correlation analyses. Spartan calculations are presented which support the structural assignment. This structural characterization leads to an explanation of the behavior and the reactivity of these complexes in solution.
Collapse
Affiliation(s)
- Gerald Kagan
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
35
|
Fitzkee NC, Torchia DA, Bax A. Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain. Protein Sci 2011; 20:500-12. [PMID: 21213249 DOI: 10.1002/pro.582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 10/07/2010] [Indexed: 11/12/2022]
Abstract
Measurements of rapid hydrogen exchange (HX) of water with protein amide sites contain valuable information on protein structure and function, but current NMR methods for measuring HX rates are limited in their applicability to large protein systems. An alternate method for measuring rapid HX is presented that is well-suited for larger proteins, and we apply the method to the deuterated, homodimeric 36 kDa HIV-1 integrase catalytic core domain (CCD). Using long mixing times for water-amide magnetization exchange at multiple pH values, HX rates spanning more than four orders of magnitude were measured, as well as NOE cross-relaxation rates to nearby exchangeable protons. HX protection factors for the CCD are found to be large (>10(4)) for residues along the dimer interface, but much smaller in many other regions. Notably, the catalytic helix (residues 152-167) exhibits low HX protection at both ends, indicative of fraying at both termini as opposed to just the N-terminal end, as originally thought. Residues in the LEDGF/p75 binding pocket also show marginal stability, with protection factors in the 10-100 range (∼1.4-2.7 kcal/mol). Additionally, elevated NOE cross-relaxation rates are identified and, as expected, correspond to proximity of the amide proton to a rapidly exchanging proton, typically from an OH side chain. Indirect NOE transfer between H(2) O and the amide proton of I141, a residue in the partially disordered active site of the enzyme, suggests its proximity to the side chain of S147, an interaction seen in the DNA-bound form for a homologous integrase.
Collapse
Affiliation(s)
- Nicholas C Fitzkee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | |
Collapse
|
36
|
Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:942-68. [PMID: 21059410 DOI: 10.1016/j.bbapap.2010.10.012] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 01/15/2023]
Abstract
Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the structural bases of their biological functions including catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance (NMR) spectroscopy represents a powerful technique for measuring these essential features of proteins. Here we provide an introduction to NMR-based approaches for studying protein dynamics, highlighting eight distinct methods with recent examples, contextualized within a common experimental and analytical framework. The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3) Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8) Paramagnetic relaxation enhancement. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Ian R Kleckner
- The Ohio State University Biophysics Program, 484 West 12th Ave Room 776, Columbus, OH 43210, USA
| | | |
Collapse
|
37
|
Pacheco V, Ma P, Thielmann Y, Hartmann R, Weiergräber OH, Mohrlüder J, Willbold D. Assessment of GABARAP self-association by its diffusion properties. JOURNAL OF BIOMOLECULAR NMR 2010; 48:49-58. [PMID: 20665069 DOI: 10.1007/s10858-010-9437-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/13/2010] [Indexed: 05/04/2023]
Abstract
Gamma-aminobutyric acid type A receptor-associated protein (GABARAP) belongs to a family of small ubiquitin-like adaptor proteins implicated in intracellular vesicle trafficking and autophagy. We have used diffusion-ordered nuclear magnetic resonance spectroscopy to study the temperature and concentration dependence of the diffusion properties of GABARAP. Our data suggest the presence of distinct conformational states and provide support for self-association of GABARAP molecules. Assuming a monomer-dimer equilibrium, a temperature-dependent dissociation constant could be derived. Based on a temperature series of (1)H(15)N heteronuclear single quantum coherence nuclear magnetic resonance spectra, we propose residues potentially involved in GABARAP self-interaction. The possible biological significance of these observations is discussed with respect to alternative scenarios of oligomerization.
Collapse
Affiliation(s)
- Victor Pacheco
- Institut für Strukturbiologie und Biophysik 3, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Khajeh M, Botana A, Bernstein MA, Nilsson M, Morris GA. Reaction Kinetics Studied Using Diffusion-Ordered Spectroscopy and Multiway Chemometrics. Anal Chem 2010; 82:2102-8. [DOI: 10.1021/ac100110m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maryam Khajeh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K., and AstraZeneca R&D Charnwood, Bakewell Rd, Loughborough, Leics LE11 5RH, U.K
| | - Adolfo Botana
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K., and AstraZeneca R&D Charnwood, Bakewell Rd, Loughborough, Leics LE11 5RH, U.K
| | - Michael A. Bernstein
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K., and AstraZeneca R&D Charnwood, Bakewell Rd, Loughborough, Leics LE11 5RH, U.K
| | - Mathias Nilsson
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K., and AstraZeneca R&D Charnwood, Bakewell Rd, Loughborough, Leics LE11 5RH, U.K
| | - Gareth A. Morris
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K., and AstraZeneca R&D Charnwood, Bakewell Rd, Loughborough, Leics LE11 5RH, U.K
| |
Collapse
|
39
|
Weininger U, Zeeb M, Neumann P, Löw C, Stubbs MT, Lipps G, Balbach J. Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus. Biochemistry 2009; 48:10030-7. [PMID: 19788170 DOI: 10.1021/bi900760n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ORF56 is a small and thermodynamically extremely stable dimeric protein from the archaeon Sulfolobus islandicus. This DNA binding protein is encoded on plasmid pRN1 and possibly controls the copy number of the plasmid. We report the solution NMR structure as well as the crystal structure of ORF56 comprising a ribbon-helix-helix fold. The homodimer consists of an antiparallel intersubunit beta-sheet and two alpha-helices per monomer, which is a common DNA binding fold of plasmid- and phage-encoded gene regulation proteins. NMR titration experiments with ORF56 and double-stranded DNA derived from its promoter binding site revealed that it is largely the beta-sheets that interact with the DNA. The beta-sheet experiences high local fluctuations, which are conserved among DNA binding ribbon-helix-helix dimers from mesophilic and hyperthermophilic organisms. In contrast, residues strongly protected against H-D exchange are localized in helix 2, forming the hydrophobic intermolecular core of the dimer. A structure-based comparison of the intermolecular binding surface and the change in accessible surface area upon unfolding of various ribbon-helix-helix dimers with the Gibbs free energy changes and m values show a correlation between hydrophobicity of these surface areas and stability. These findings provide possible explanations for the very high thermodynamic stability of ORF56 with retained DNA binding capacity.
Collapse
Affiliation(s)
- Ulrich Weininger
- Institut fur Physik, Biophysik, Martin-Luther-Universitat Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Nilsson M. The DOSY Toolbox: a new tool for processing PFG NMR diffusion data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 200:296-302. [PMID: 19666235 DOI: 10.1016/j.jmr.2009.07.022] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/03/2009] [Accepted: 07/11/2009] [Indexed: 05/28/2023]
Abstract
The DOSY Toolbox is a free programme for processing PFG NMR diffusion data (sometimes loosely referred to as DOSY data), distributed under the GNU General Public License. NMR data from three major manufacturers can be imported and all processing is done in a user-friendly graphical user interface. The Toolbox is completely free-standing in the sense that all necessary basic processing of NMR data (e.g., Fourier transformation and phasing) is catered for within the programme, as well as a number of methods specific to DOSY data (e.g., DOSY and SCORE). The programme is written in MATLAB and as such can be run on any platform, but can also run independent of MATLAB in a free-standing compiled version for Windows, Mac, and Linux.
Collapse
Affiliation(s)
- Mathias Nilsson
- School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
41
|
Nilsson M, Botana A, Morris GA. T1-Diffusion-Ordered Spectroscopy: Nuclear Magnetic Resonance Mixture Analysis Using Parallel Factor Analysis. Anal Chem 2009; 81:8119-25. [DOI: 10.1021/ac901321w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mathias Nilsson
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Adolfo Botana
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Gareth A. Morris
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
42
|
Yoshii N, Okamura E. Kinetics of membrane binding and dissociation of 5-fluorouracil by pulsed-field-gradient 19F NMR. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.04.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Protein effective rotational correlation times from translational self-diffusion coefficients measured by PFG-NMR. Biophys Chem 2008; 136:145-51. [DOI: 10.1016/j.bpc.2008.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/20/2022]
|