1
|
Profantová B, Římal V, Profant V, Socha O, Barvík I, Štěpánková H, Štěpánek J. Polymorphic potential of SRF binding site of c-Fos gene promoter: in vitro study. RSC Adv 2024; 14:38253-38267. [PMID: 39628460 PMCID: PMC11613138 DOI: 10.1039/d4ra05897f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Recently published in vivo observations have highlighted the presence of cruciform structures within the genome, suggesting their potential significance in the rapid recognition of the target sequence for transcription factor binding. In this in vitro study, we investigate the organization and stability of the sense (coding) strand within the Serum Response Element of the c-Fos gene promoter (c-Fos SRE), specifically focusing on segments spanning 12 to 36 nucleotides, centered around the CArG-box. Through a thorough examination of UV absorption patterns with varying temperatures, we identified the emergence of a remarkably stable structure, which we conclusively characterized as a hairpin using complementary 1H NMR experiments. Our research decisively ruled out the formation of homoduplexes, as confirmed by supplementary fluorescence experiments. Utilizing molecular dynamics simulations with atomic distance constraints derived from NMR data, we explored the structural intricacies of the compact hairpin. Notably, the loop consisting of the six-membered A/T sequence demonstrated substantial stabilization through extensive stacking, non-canonical inter-base hydrogen bonding, and hydrophobic clustering of thymine methyl groups. These findings suggest the potential of the c-Fos SRE to adopt a cruciform structure (consisting of two opposing hairpins), potentially providing a topological recognition site for the SRF transcription factor under cellular conditions. Our results should inspire further biochemical and in vivo studies to explore the functional implications of these non-canonical DNA structures.
Collapse
Affiliation(s)
- Barbora Profantová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471
| | - Václav Římal
- Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2, 180 00 Prague 8 Czech Republic
| | - Václav Profant
- Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471
| | - Ondřej Socha
- Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2, 180 00 Prague 8 Czech Republic
| | - Ivan Barvík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471
| | - Helena Štěpánková
- Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2, 180 00 Prague 8 Czech Republic
| | - Josef Štěpánek
- Institute of Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 121 16 Prague 2 Czech Republic +420 95155 1471
| |
Collapse
|
2
|
Liu Y, Kotar A, Hodges TL, Abdallah K, Taleb MH, Bitterman BA, Jaime S, Schaubroeck KJ, Mathew E, Morgenstern NW, Lohmeier A, Page JL, Ratanapanichkich M, Arhin G, Johnson BL, Cherepanov S, Moss SC, Zuniga G, Tilson NJ, Yeoh ZC, Johnson BA, Keane SC. NMR chemical shift assignments of RNA oligonucleotides to expand the RNA chemical shift database. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:479-490. [PMID: 34449019 DOI: 10.1007/s12104-021-10049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
RNAs play myriad functional and regulatory roles in the cell. Despite their significance, three-dimensional structure elucidation of RNA molecules lags significantly behind that of proteins. NMR-based studies are often rate-limited by the assignment of chemical shifts. Automation of the chemical shift assignment process can greatly facilitate structural studies, however, accurate chemical shift predictions rely on a robust and complete chemical shift database for training. We searched the Biological Magnetic Resonance Data Bank (BMRB) to identify sequences that had no (or limited) chemical shift information. Here, we report the chemical shift assignments for 12 RNA hairpins designed specifically to help populate the BMRB.
Collapse
Affiliation(s)
- Yaping Liu
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Anita Kotar
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
- Current Address: Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Tracy L Hodges
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Kyrillos Abdallah
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Mallak H Taleb
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Brayden A Bitterman
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Sara Jaime
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Kyle J Schaubroeck
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Ethan Mathew
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Nicholas W Morgenstern
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Anthony Lohmeier
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Jordan L Page
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Matt Ratanapanichkich
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Grace Arhin
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Breanna L Johnson
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Stanislav Cherepanov
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Stephen C Moss
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Gisselle Zuniga
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Nicholas J Tilson
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Zoe C Yeoh
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Bruce A Johnson
- Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sarah C Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Brown JD, Summers MF, Johnson BA. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression. JOURNAL OF BIOMOLECULAR NMR 2015; 63:39-52. [PMID: 26141454 PMCID: PMC4669054 DOI: 10.1007/s10858-015-9961-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/29/2015] [Indexed: 05/29/2023]
Abstract
The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.
Collapse
Affiliation(s)
- Joshua D Brown
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Michael F Summers
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Bruce A Johnson
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
- One Moon Scientific, Inc., 839 Grant Ave., Westfield, NJ, 07090, USA.
- CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
| |
Collapse
|
4
|
Ng KS, Lam SL. NMR proton chemical shift prediction of C·C mismatches in B-DNA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:87-93. [PMID: 25681800 DOI: 10.1016/j.jmr.2015.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 05/15/2023]
Abstract
Accurate prediction of DNA chemical shifts facilitates resonance assignment and allows recognition of different conformational features. Based on the nearest neighbor model and base pair replacement approach, we have determined a set of triplet chemical shift values and correction factors for predicting the proton chemical shifts of B-DNA containing an internal C·C mismatch. Our results provide a reliable chemical shift prediction with an accuracy of 0.07 ppm for non-labile protons and 0.09 ppm for labile protons. In addition, we have also shown that the correction factors for C·C mismatches can be used interchangeably with those for T·T mismatches. As a result, we have generalized a set of correction factors for predicting the flanking residue chemical shifts of pyrimidine·pyrimidine mismatches.
Collapse
Affiliation(s)
- Kui Sang Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
6
|
Kwok CK, Lam SL. NMR proton chemical shift prediction of T·T mismatches in B-DNA duplexes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:184-9. [PMID: 23892104 DOI: 10.1016/j.jmr.2013.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 05/15/2023]
Abstract
A proton chemical shift prediction scheme for B-DNA duplexes containing a T·T mismatch has been established. The scheme employs a set of T·T mismatch triplet chemical shift values, 5'- and 3'-correction factors extracted from reference sequences, and also the B-DNA chemical shift values predicted by Altona et al. The prediction scheme was tested by eight B-DNA duplexes containing T·T mismatches. Based on 560 sets of predicted and experimental proton chemical shift values, the overall prediction accuracy for non-labile protons was determined to be 0.07 ppm with an excellent correlation coefficient of 0.9996. In addition, the prediction accuracy for 96 sets of labile protons was found to be 0.22 ppm with a correlation coefficient of 0.9961. The prediction scheme developed herein can facilitate resonance assignments of B-DNA duplexes containing T·T mismatches and be generalized for the chemical shift prediction of other DNA mismatches. Our chemical shift data will also be useful for establishing structure-chemical shift information in B-DNA containing mismatches.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|