1
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Identification of productive and futile encounters in an electron transfer protein complex. Proc Natl Acad Sci U S A 2017; 114:E1840-E1847. [PMID: 28223532 DOI: 10.1073/pnas.1616813114] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Well-defined, stereospecific states in protein complexes are often in exchange with an ensemble of more dynamic orientations: the encounter states. The structure of the stereospecific complex between cytochrome P450cam and putidaredoxin was solved recently by X-ray diffraction as well as paramagnetic NMR spectroscopy. Other than the stereospecific complex, the NMR data clearly show the presence of additional states in the complex in solution. In these encounter states, populated for a small percentage of the time, putidaredoxin assumes multiple orientations and samples a large part of the surface of cytochrome P450cam. To characterize the nature of the encounter states, an extensive paramagnetic NMR dataset has been analyzed using the Maximum Occurrence of Regions methodology. The analysis reveals the location and maximal spatial extent of the additional states needed to fully explain the NMR data. Under the assumption of sparsity of the size of the conformational ensemble, several minor states can be located quite precisely. The distribution of these minor states correlates with the electrostatic potential map around cytochrome P450cam. Whereas some minor states are on isolated positively charged patches, others are connected to the stereospecific site via positively charged paths. The existence of electrostatically favorable pathways between the stereospecific interaction site and the different minor states or lack thereof suggests a means to discriminate between productive and futile encounter states.
Collapse
|
3
|
Nitsche C, Otting G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:20-49. [PMID: 28283085 DOI: 10.1016/j.pnmrs.2016.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Affiliation(s)
- Christoph Nitsche
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia. http://www.rsc.anu.edu.au/~go/index.html
| |
Collapse
|
4
|
Cole CA, Mukhopadhyay R, Omar H, Hennig M, Valafar H. Structure Calculation and Reconstruction of Discrete-State Dynamics from Residual Dipolar Couplings. J Chem Theory Comput 2016; 12:1408-22. [PMID: 26984680 DOI: 10.1021/acs.jctc.5b01091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Residual dipolar couplings (RDCs) acquired by nuclear magnetic resonance (NMR) spectroscopy are an indispensable source of information in investigation of molecular structures and dynamics. Here, we present a comprehensive strategy for structure calculation and reconstruction of discrete-state dynamics from RDC data that is based on the singular value decomposition (SVD) method of order tensor estimation. In addition to structure determination, we provide a mechanism of producing an ensemble of conformations for the dynamical regions of a protein from RDC data. The developed methodology has been tested on simulated RDC data with ±1 Hz of error from an 83 residue α protein (PDB ID 1A1Z ) and a 213 residue α/β protein DGCR8 (PDB ID 2YT4 ). In nearly all instances, our method reproduced the structure of the protein including the conformational ensemble to within less than 2 Å. On the basis of our investigations, arc motions with more than 30° of rotation are identified as internal dynamics and are reconstructed with sufficient accuracy. Furthermore, states with relative occupancies above 20% are consistently recognized and reconstructed successfully. Arc motions with a magnitude of 15° or relative occupancy of less than 10% are consistently unrecognizable as dynamical regions within the context of ±1 Hz of error.
Collapse
Affiliation(s)
- Casey A Cole
- Department of Computer Science & Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Rishi Mukhopadhyay
- Department of Computer Science & Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Hanin Omar
- Department of Computer Science & Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Mirko Hennig
- Nutrition Research Institute, University of North Carolina at Chapel Hill , Kannapolis, North Carolina 27514, United States
| | - Homayoun Valafar
- Department of Computer Science & Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Andrałojć W, Berlin K, Fushman D, Luchinat C, Parigi G, Ravera E, Sgheri L. Information content of long-range NMR data for the characterization of conformational heterogeneity. JOURNAL OF BIOMOLECULAR NMR 2015; 62:353-71. [PMID: 26044033 PMCID: PMC4782772 DOI: 10.1007/s10858-015-9951-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/25/2015] [Indexed: 05/16/2023]
Abstract
Long-range NMR data, namely residual dipolar couplings (RDCs) from external alignment and paramagnetic data, are becoming increasingly popular for the characterization of conformational heterogeneity of multidomain biomacromolecules and protein complexes. The question addressed here is how much information is contained in these averaged data. We have analyzed and compared the information content of conformationally averaged RDCs caused by steric alignment and of both RDCs and pseudocontact shifts caused by paramagnetic alignment, and found that, despite the substantial differences, they contain a similar amount of information. Furthermore, using several synthetic tests we find that both sets of data are equally good towards recovering the major state(s) in conformational distributions.
Collapse
Affiliation(s)
- Witold Andrałojć
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Konstantin Berlin
- Department of Chemistry and Biochemistry, Center for Biomolecular
Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular
Structure and Organization, University of Maryland, College Park, MD 20742, USA
- Corresponding authors: David Fushman, ,
Claudio Luchinat,
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Corresponding authors: David Fushman, ,
Claudio Luchinat,
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via
L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University
of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luca Sgheri
- Istituto per le Applicazioni del Calcolo, Sezione di Firenze,
CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Lee MD, Loh CT, Shin J, Chhabra S, Dennis ML, Otting G, Swarbrick JD, Graham B. Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy. Chem Sci 2015; 6:2614-2624. [PMID: 29560247 PMCID: PMC5812434 DOI: 10.1039/c4sc03892d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/25/2015] [Indexed: 01/18/2023] Open
Abstract
The design, synthesis and evaluation of four novel lanthanide-binding tags for paramagnetic NMR spectroscopy are reported.
The design, synthesis and evaluation of four novel lanthanide-binding tags for paramagnetic NMR spectroscopy are reported. Each tag is based on the ((2S,2′S,2′′S,2′′′S)-1,1′,1′′,1′′′-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(propan-2-ol)) scaffold, featuring small chiral alcohol coordinating pendants to minimise the size and hydrophobic character of each tag. The tags feature different linkers of variable length for conjugation to protein via a single cysteine residue. Each tag's ability to induce pseudocontact shifts (PCS) was assessed on a ubiquitin A28C mutant. Two enantiomeric tags of particular note, C7 and C8, produced significantly larger Δχ-tensors compared to a previously developed tag, C1, attributed to the extremely short linker utilised, limiting the mobility of the bound lanthanide ion. The C7 and C8 tags' capacity to induce PCSs was further demonstrated on GB1 Q32C and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) S112C/C80A mutants. Whilst factors such as the choice of lanthanide ion, pH and site of conjugation influence the size of the PCSs obtained, the tags represent a significant advance in the field.
Collapse
Affiliation(s)
- M D Lee
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - C-T Loh
- Research School of Chemistry , Australian National University , Canberra , ACT 0200 , Australia
| | - J Shin
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - S Chhabra
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - M L Dennis
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - G Otting
- Research School of Chemistry , Australian National University , Canberra , ACT 0200 , Australia
| | - J D Swarbrick
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| | - B Graham
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , VIC 3052 , Australia . ;
| |
Collapse
|
7
|
Abstract
Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.
Collapse
Affiliation(s)
- Nicholas J. Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
8
|
Andrałojć W, Luchinat C, Parigi G, Ravera E. Exploring regions of conformational space occupied by two-domain proteins. J Phys Chem B 2014; 118:10576-87. [PMID: 25144917 DOI: 10.1021/jp504820w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The presence of heterogeneity in the interdomain arrangement of several biomolecules is required for their function. Here we present a method to obtain crucial clues to distinguish between different kinds of protein conformational distributions based on experimental NMR data. The method explores subregions of the conformational space and provides both upper and lower bounds of probability for the system to be in each subregion.
Collapse
Affiliation(s)
- Witold Andrałojć
- Center for Magnetic Resonance, University of Florence , Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
9
|
Schilder J, Löhr F, Schwalbe H, Ubbink M. The cytochrome c peroxidase and cytochrome c encounter complex: the other side of the story. FEBS Lett 2014; 588:1873-8. [PMID: 24726731 DOI: 10.1016/j.febslet.2014.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 11/18/2022]
Abstract
Formation of an encounter complex is important for efficient protein complex formation. The encounter state consists of an ensemble of orientations of two proteins in the complex. Experimental description of such ensembles inherently suffers from insufficient data availability. We have measured paramagnetic relaxation enhancements (PRE) on cytochrome c peroxidase (CcP) caused by its partner cytochrome c (Cc) carrying a spin label. The data complement earlier PRE data of spin labelled CcP, identifying several new interactions. This work demonstrates the need of obtaining as many independent data sets as possible to achieve the most accurate description of an encounter complex.
Collapse
Affiliation(s)
- Jesika Schilder
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank Löhr
- Institute of Biophysical Chemistry, Goethe University Frankfurt and Centre for Biomolecular Magnetic Resonance, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Centre for Biomolecular Magnetic Resonance, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
10
|
Hass MAS, Ubbink M. Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr Opin Struct Biol 2014; 24:45-53. [DOI: 10.1016/j.sbi.2013.11.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
|
11
|
Fragai M, Luchinat C, Parigi G, Ravera E. Conformational freedom of metalloproteins revealed by paramagnetism-assisted NMR. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Cerofolini L, Fields GB, Fragai M, Geraldes CFGC, Luchinat C, Parigi G, Ravera E, Svergun DI, Teixeira JMC. Examination of matrix metalloproteinase-1 in solution: a preference for the pre-collagenolysis state. J Biol Chem 2013; 288:30659-30671. [PMID: 24025334 DOI: 10.1074/jbc.m113.477240] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalysis of collagen degradation by matrix metalloproteinase 1 (MMP-1) has been proposed to critically rely on flexibility between the catalytic (CAT) and hemopexin-like (HPX) domains. A rigorous assessment of the most readily accessed conformations in solution is required to explain the onset of substrate recognition and collagenolysis. The present study utilized paramagnetic NMR spectroscopy and small angle x-ray scattering (SAXS) to calculate the maximum occurrence (MO) of MMP-1 conformations. The MMP-1 conformations with large MO values (up to 47%) are restricted into a relatively small conformational region. All conformations with high MO values differ largely from the closed MMP-1 structures obtained by x-ray crystallography. The MO of the latter is ~20%, which represents the upper limit for the presence of this conformation in the ensemble sampled by the protein in solution. In all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. Thus, overall analysis of the highest MO conformations indicated that MMP-1 in solution was poised to interact with collagen and then could readily proceed along the steps of collagenolysis.
Collapse
Affiliation(s)
| | - Gregg B Fields
- the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987,.
| | - Marco Fragai
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Carlos F G C Geraldes
- the Center for Neuroscience and Cell Biology and; the Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal, and
| | - Claudio Luchinat
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy,.
| | - Giacomo Parigi
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- From the CERM and; the Department of Chemistry "U. Schiff," University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Dmitri I Svergun
- the EMBL, c/o DESY, Notkestrasse 85, Geb. 25 A, 22603 Hamburg, Germany
| | - João M C Teixeira
- From the CERM and; the Center for Neuroscience and Cell Biology and; the Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal, and
| |
Collapse
|
13
|
Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS. Biochem Soc Trans 2013; 40:955-62. [PMID: 22988847 DOI: 10.1042/bst20120149] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, IDPs (intrinsically disordered proteins) have emerged as pivotal actors in biology. Despite IDPs being present in all kingdoms of life, they are more abundant in eukaryotes where they are involved in the vast majority of regulation and signalling processes. The realization that, in some cases, functional states of proteins were partly or fully disordered was in contradiction to the traditional view where a well defined three-dimensional structure was required for activity. Several experimental evidences indicate, however, that structural features in IDPs such as transient secondary-structural elements and overall dimensions are crucial to their function. NMR has been the main tool to study IDP structure by probing conformational preferences at residue level. Additionally, SAXS (small-angle X-ray scattering) has the capacity to report on the three-dimensional space sampled by disordered states and therefore complements the local information provided by NMR. The present review describes how the synergy between NMR and SAXS can be exploited to obtain more detailed structural and dynamic models of IDPs in solution. These combined strategies, embedded into computational approaches, promise the elucidation of the structure-function properties of this important, but elusive, family of biomolecules.
Collapse
|
14
|
Bertini I, Luchinat C, Nagulapalli M, Parigi G, Ravera E. Paramagnetic relaxation enhancement for the characterization of the conformational heterogeneity in two-domain proteins. Phys Chem Chem Phys 2012; 14:9149-56. [PMID: 22622816 DOI: 10.1039/c2cp40139h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidomain proteins are often composed of rigid domains that can reorient in solution more or less freely. Calmodulin (CaM) is a two domain protein which can experience a large degree of conformational freedom thanks to a mobile linker connecting the N-terminal and C-terminal domains of the protein. The maximum occurrences (MOs) of the possible protein conformations have been analyzed using the paramagnetic relaxation enhancements (PREs) induced by a gadolinium(III) ion together with the paramagnetic pseudocontact shift and residual dipolar coupling restraints measured in the presence of terbium(III), thulium(III) or dysprosium(III) ions. The results suggest that the PREs provide complementary information useful for improving the description of the conformational heterogeneity of the protein. The data, acquired at 298 K and at 278 K, suggest that compact conformations are disfavoured by decreasing the temperature.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.
| | | | | | | | | |
Collapse
|