1
|
O'Connell RC, Tseytlin O, Bobko AA, Eubank TD, Tseytlin M. Rapid scan EPR: Automated digital resonator control for low-latency data acquisition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107308. [PMID: 36356489 PMCID: PMC10266206 DOI: 10.1016/j.jmr.2022.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/05/2023]
Abstract
Automation has become an essential component of modern scientific instruments which often capture large amounts of complex dynamic data. Algorithms are developed to read multiple sensors in parallel with data acquisition and to adjust instrumental parameters on the fly. Decisions are made on a time scale unattainable to the human operator. In addition to speed, automation reduces human error, improves the reproducibility of experiments, and improves the reliability of acquired data. An automatic digital control (ADiC) was developed to reliably sustain critical coupling of a resonator over a wide range of time-varying loading conditions. The ADiC uses the computational power of a microcontroller that directly communicates with all system components independent of a personal computer (PC). The PC initiates resonator tuning and coupling by sending a command to MC via serial port. After receiving the command, ADiC establishes critical coupling conditions within approximately 5 ms. A printed circuit board resonator was designed to permit digital control. The performance of the resonator together with the ADiC was evaluated by varying the resonator loading from empty to heavily loaded. For the loading, samples containing aqueous sodium chloride that strongly absorb electromagnetic waves were used. A previously reported rapid scan (RS) electron paramagnetic resonance (EPR) imaging instrument was upgraded by the incorporation of ADiC. RS spectra and an in vivo image of oxygen in a mouse tumor model have been acquired using the upgraded system. ADiC robustly sustained critical coupling of the resonator to the transmission line during these measurements. The design implemented in this study can be used in slow-scan and pulsed EPR with modifications.
Collapse
Affiliation(s)
- Ryan C O'Connell
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Oxana Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Andrey A Bobko
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Mark Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA; West Virginia University Cancer Institute, Morgantown, WV 26506, USA; In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
2
|
Biller JR, McPeak JE. EPR Everywhere. APPLIED MAGNETIC RESONANCE 2021; 52:1113-1139. [PMID: 33519097 PMCID: PMC7826499 DOI: 10.1007/s00723-020-01304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
This review is inspired by the contributions from the University of Denver group to low-field EPR, in honor of Professor Gareth Eaton's 80th birthday. The goal is to capture the spirit of innovation behind the body of work, especially as it pertains to development of new EPR techniques. The spirit of the DU EPR laboratory is one that never sought to limit what an EPR experiment could be, or how it could be applied. The most well-known example of this is the development and recent commercialization of rapid-scan EPR. Both of the Eatons have made it a point to remain knowledgeable on the newest developments in electronics and instrument design. To that end, our review touches on the use of miniaturized electronics and applications of single-board spectrometers based on software-defined radio (SDR) implementations and single-chip voltage-controlled oscillator (VCO) arrays. We also highlight several non-traditional approaches to the EPR experiment such as an EPR spectrometer with a "wand" form factor for analysis of the OxyChip, the EPR-MOUSE which enables non-destructive in situ analysis of many non-conforming samples, and interferometric EPR and frequency swept EPR as alternatives to classical high Q resonant structures.
Collapse
Affiliation(s)
| | - Joseph E. McPeak
- University of Denver, Denver, CO 80210 USA
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPINS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
3
|
Buchanan LA, Woodcock LB, Rinard GA, Quine RW, Shi Y, Eaton SS, Eaton GR. 250 MHz Rapid Scan Cross Loop Resonator. APPLIED MAGNETIC RESONANCE 2019; 50:333-345. [PMID: 30799909 PMCID: PMC6380496 DOI: 10.1007/s00723-018-1078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A 25 mm diameter 250 MHz crossed-loop resonator was designed for rapid scan electron paramagnetic resonance imaging. It has a saddle coil for the driven resonator and a fine wire, loop gap resonator for the sample resonator. There is good separation of E and B fields and high isolation between the two resonators, permitting a wide range of sample types to be measured. Applications to imaging of nitroxide, trityl, and LiPc samples illustrate the utility of the resonator. Using this resonator and a trityl sample the signal-to-noise of a rapid scan absorption spectrum is about 20 times higher than for a first-derivative CW spectrum.
Collapse
Affiliation(s)
- Laura A. Buchanan
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Lukas B. Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - George A. Rinard
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210
| | - Richard W. Quine
- School of Engineering and Computer Science, University of Denver, Denver, CO 80210
| | - Yilin Shi
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210
| |
Collapse
|
4
|
Waddington DEJ, Sarracanie M, Salameh N, Herisson F, Ayata C, Rosen MS. An Overhauser-enhanced-MRI platform for dynamic free radical imaging in vivo. NMR IN BIOMEDICINE 2018; 31:e3896. [PMID: 29493032 DOI: 10.1002/nbm.3896] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Overhauser-enhanced MRI (OMRI) is an electron-proton double-resonance imaging technique of interest for its ability to non-invasively measure the concentration and distribution of free radicals. In vivo OMRI experiments are typically undertaken at ultra-low magnetic field (ULF), as both RF power absorption and penetration issues-a consequence of the high resonance frequencies of electron spins-are mitigated. However, working at ULF causes a drastic reduction in MRI sensitivity. Here, we report on the design, construction and performance of an OMRI platform optimized for high NMR sensitivity and low RF power absorbance, exploring challenges unique to probe design in the ULF regime. We use this platform to demonstrate dynamic imaging of TEMPOL in a rat model. The work presented here demonstrates improved speed and sensitivity of in vivo OMRI, extending the scope of OMRI to the study of dynamic processes such as metabolism.
Collapse
Affiliation(s)
- David E J Waddington
- A. A. Martinos Center for Biomedical Imaging, 149 Thirteenth St., Charlestown, MA 02129, USA
- Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 02138, USA
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mathieu Sarracanie
- A. A. Martinos Center for Biomedical Imaging, 149 Thirteenth St., Charlestown, MA 02129, USA
- Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 02138, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Najat Salameh
- A. A. Martinos Center for Biomedical Imaging, 149 Thirteenth St., Charlestown, MA 02129, USA
- Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 02138, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Fanny Herisson
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Cenk Ayata
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Matthew S Rosen
- A. A. Martinos Center for Biomedical Imaging, 149 Thirteenth St., Charlestown, MA 02129, USA
- Department of Physics, Harvard University, 17 Oxford St, Cambridge, MA 02138, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
5
|
Biller JR, Stupic KF, Moreland J. A table-top PXI based low-field spectrometer for solution dynamic nuclear polarization. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:153-163. [PMID: 29049871 DOI: 10.1002/mrc.4672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
We present the development of a portable dynamic nuclear polarization (DNP) instrument based on the PCI eXtensions for Instrumentation platform. The main purpose of the instrument is for study of 1 H polarization enhancements in solution through the Overhauser mechanism at low magnetic fields. A DNP probe set was constructed for use at 6.7 mT, using a modified Alderman-Grant resonator at 241 MHz for saturation of the electron transition. The solenoid for detection of the enhanced 1 H signal at 288 kHz was constructed with Litz wire. The largest observed 1 H enhancements (ε) at 6.7 mT for 14 N-CTPO radical in air saturated aqueous solution was ε~65. A concentration dependence of the enhancement is observed, with maximum ε at 5.5 mM. A low resonator efficiency for saturation of the electron paramagnetic resonance transition results in a decrease in ε for the 10.3 mM sample. At high incident powers (42 W) and long pump times, capacitor heating effects can also decrease the enhancement. The core unit and program described here could be easily adopted for multi-frequency DNP work, depending on available main magnets and selection of the "plug and play" arbitrary waveform generator, digitizer, and radiofrequency synthesizer PCI eXtensions for Instrumentatione cards.
Collapse
Affiliation(s)
- Joshua R Biller
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, USA
| | - Karl F Stupic
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, USA
| | - J Moreland
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, USA
| |
Collapse
|
6
|
Rinard GA, Quine RW, Buchanan LA, Eaton SS, Eaton GR, Epel B, Sundramoorthy SV, Halpern HJ. Resonators for In Vivo Imaging: Practical Experience. APPLIED MAGNETIC RESONANCE 2017; 48:1227-1247. [PMID: 29391664 PMCID: PMC5788320 DOI: 10.1007/s00723-017-0947-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Resonators for preclinical electron paramagnetic resonance imaging have been designed primarily for rodents and rabbits and have internal diameters between 16 and 51 mm. Lumped circuit resonators include loop-gap, Alderman-Grant, and saddle coil topologies and surface coils. Bimodal resonators are useful for isolating the detected signal from incident power and reducing dead time in pulse experiments. Resonators for continuous wave, rapid scan, and pulse experiments are described. Experience at the University of Chicago and University of Denver in design of resonators for in vivo imaging is summarized.
Collapse
Affiliation(s)
- George A Rinard
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Richard W Quine
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Laura A Buchanan
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Gareth R Eaton
- Center for EPR Imaging In Vivo Physiology, Department of Chemistry and Biochemistry and School of Engineering and Computer Science, University of Denver, Denver, CO 80210, USA
| | - Boris Epel
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Subramanian V Sundramoorthy
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Howard J Halpern
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| |
Collapse
|
7
|
Lee AL, Gee CT, Weegman BP, Einstein SA, Juelfs A, Ring HL, Hurley KR, Egger SM, Swindlehurst G, Garwood M, Pomerantz WCK, Haynes CL. Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles. ACS NANO 2017; 11:5623-5632. [PMID: 28505422 PMCID: PMC5515277 DOI: 10.1021/acsnano.7b01006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oxygen homeostasis is important in the regulation of biological function. Disease progression can be monitored by measuring oxygen levels, thus producing information for the design of therapeutic treatments. Noninvasive measurements of tissue oxygenation require the development of tools with minimal adverse effects and facile detection of features of interest. Fluorine magnetic resonance imaging (19F MRI) exploits the intrinsic properties of perfluorocarbon (PFC) liquids for anatomical imaging, cell tracking, and oxygen sensing. However, the highly hydrophobic and lipophobic properties of perfluorocarbons require the formation of emulsions for biological studies, though stabilizing these emulsions has been challenging. To enhance the stability and biological loading of perfluorocarbons, one option is to incorporate perfluorocarbon liquids into the internal space of biocompatible mesoporous silica nanoparticles. Here, we developed perfluorocarbon-loaded ultraporous mesostructured silica nanoparticles (PERFUMNs) as 19F MRI detectable oxygen-sensing probes. Ultraporous mesostructured silica nanoparticles (UMNs) have large internal cavities (average = 1.8 cm3 g-1), facilitating an average 17% loading efficiency of PFCs, meeting the threshold fluorine concentrations needed for imaging studies. Perfluoro-15-crown-5-ether PERFUMNs have the highest equivalent nuclei per PFC molecule and a spin-lattice (T1) relaxation-based oxygen sensitivity of 0.0032 mmHg-1 s-1 at 16.4 T. The option of loading PFCs after synthesizing UMNs, rather than traditional in situ core-shell syntheses, allows for use of a broad range of PFC liquids from a single material. The biocompatible and tunable chemistry of UMNs combined with the intrinsic properties of PFCs makes PERFUMNs a MRI sensor with potential for anatomical imaging, cell tracking, and metabolic spectroscopy with improved stability.
Collapse
Affiliation(s)
- Amani L. Lee
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Clifford T. Gee
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Bradley P. Weegman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Samuel A. Einstein
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Adam Juelfs
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hattie L. Ring
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Katie R. Hurley
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Sam M. Egger
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Garrett Swindlehurst
- Department of Chemical Engineering & Material Science, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
8
|
Serda M, Wu YK, Barth ED, Halpern HJ, Rawal VH. EPR Imaging Spin Probe Trityl Radical OX063: A Method for Its Isolation from Animal Effluent, Redox Chemistry of Its Quinone Methide Oxidation Product, and in Vivo Application in a Mouse. Chem Res Toxicol 2016; 29:2153-2156. [PMID: 27989135 DOI: 10.1021/acs.chemrestox.6b00277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report herein a method for the recovery, purification, and application of OX063, a costly, commercially available nontoxic spin probe widely used for electron paramagnetic resonance (EPR) imaging, as well as its corresponding quinone methide (QM) form. This precious probe can be successfully recovered after use in animal model experiments (25-47% recovery from crude lyophilizate with 98.5% purity), even from samples that are >2 years old. Significantly, the recovered trityl can be reused in further animal model EPR imaging experiments. The work also describes support for the observed formation of an air-sensitive radical derived from the QM under reducing conditions.
Collapse
Affiliation(s)
- Maciej Serda
- Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yen-Ku Wu
- Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Eugene D Barth
- The Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago , 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Howard J Halpern
- The Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago , 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Viresh H Rawal
- Department of Chemistry, University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Tseytlin M, Epel B, Sundramoorthy S, Tipikin D, Halpern HJ. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 272:91-99. [PMID: 27673275 PMCID: PMC5071169 DOI: 10.1016/j.jmr.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 06/05/2023]
Abstract
In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26MHz and using sinusoidal modulation at 480kHz.
Collapse
Affiliation(s)
- Mark Tseytlin
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA; In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| | - Boris Epel
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Subramanian Sundramoorthy
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Dmitriy Tipikin
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, USA; In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Howard J Halpern
- Center for EPR Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| |
Collapse
|
10
|
Spitzbarth M, Drescher M. Simultaneous iterative reconstruction technique software for spectral-spatial EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:79-88. [PMID: 26102454 DOI: 10.1016/j.jmr.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 05/13/2023]
Abstract
Continuous wave electron paramagnetic resonance imaging (EPRI) experiments often suffer from low signal to noise ratio. The increase in spectrometer time required to acquire data of sufficient quality to allow further analysis can be counteracted in part by more processing effort during the image reconstruction step. We suggest a simultaneous iterative reconstruction algorithm (SIRT) for reconstruction of continuous wave EPRI experimental data as an alternative to the widely applied filtered back projection algorithm (FBP). We show experimental and numerical test data of 2d spatial images and spectral-spatial images. We find that for low signal to noise ratio and spectral-spatial images that are limited by the maximum magnetic field gradient strength SIRT is more suitable than FBP.
Collapse
Affiliation(s)
- Martin Spitzbarth
- University of Konstanz, Department of Chemistry, 78457 Konstanz, Germany
| | - Malte Drescher
- University of Konstanz, Department of Chemistry, 78457 Konstanz, Germany.
| |
Collapse
|