1
|
Štěrbová P, Wang CH, Carillo KJD, Lou YC, Kato T, Namba K, Tzou DLM, Chang WH. Molecular Mechanism of pH-Induced Protrusion Configuration Switching in Piscine Betanodavirus Implies a Novel Antiviral Strategy. ACS Infect Dis 2024; 10:3304-3319. [PMID: 39087906 PMCID: PMC11406519 DOI: 10.1021/acsinfecdis.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Many viruses contain surface spikes or protrusions that are essential for virus entry. These surface structures can thereby be targeted by antiviral drugs to treat viral infections. Nervous necrosis virus (NNV), a simple nonenveloped virus in the genus of betanodavirus, infects fish and damages aquaculture worldwide. NNV has 60 conspicuous surface protrusions, each comprising three protrusion domains (P-domain) of its capsid protein. NNV uses protrusions to bind to common receptors of sialic acids on the host cell surface to initiate its entry via the endocytic pathway. However, structural alterations of NNV in response to acidic conditions encountered during this pathway remain unknown, while detailed interactions of protrusions with receptors are unclear. Here, we used cryo-EM to discover that Grouper NNV protrusions undergo low-pH-induced compaction and resting. NMR and molecular dynamics (MD) simulations were employed to probe the atomic details. A solution structure of the P-domain at pH 7.0 revealed a long flexible loop (amino acids 311-330) and a pocket outlined by this loop. Molecular docking analysis showed that the N-terminal moiety of sialic acid inserted into this pocket to interact with conserved residues inside. MD simulations demonstrated that part of this loop converted to a β-strand under acidic conditions, allowing for P-domain trimerization and compaction. Additionally, a low-pH-favored conformation is attained for the linker connecting the P-domain to the NNV shell, conferring resting protrusions. Our findings uncover novel pH-dependent conformational switching mechanisms underlying NNV protrusion dynamics potentially utilized for facilitating NNV entry, providing new structural insights into complex NNV-host interactions with the identification of putative druggable hotspots on the protrusion.
Collapse
Affiliation(s)
- Petra Štěrbová
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- College of Life Science, National Tsing Hua University, Hsinchu 30044, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | - Yuan-Chao Lou
- Biomedical Translation Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Hau Chang
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Bermejo GA, Tjandra N, Clore GM, Schwieters CD. Xplor-NIH: Better parameters and protocols for NMR protein structure determination. Protein Sci 2024; 33:e4922. [PMID: 38501482 PMCID: PMC10962493 DOI: 10.1002/pro.4922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/20/2024]
Abstract
The present work describes an update to the protein covalent geometry and atomic radii parameters in the Xplor-NIH biomolecular structure determination package. In combination with an improved treatment of selected non-bonded interactions between atoms three bonds apart, such as those involving methyl hydrogens, and a previously developed term that affects the system's gyration volume, the new parameters are tested using structure calculations on 30 proteins with restraints derived from nuclear magnetic resonance data. Using modern structure validation criteria, including several formally adopted by the Protein Data Bank, and a clear measure of structural accuracy, the results show superior performance relative to previous Xplor-NIH implementations. Additionally, the Xplor-NIH structures compare favorably against originally determined NMR models.
Collapse
Affiliation(s)
- Guillermo A. Bermejo
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMarylandUSA
| | - G. Marius Clore
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Charles D. Schwieters
- Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
3
|
Gao J, Jishage M, Wang Y, Wang R, Chen M, Zhu Z, Zhang J, Diwu Y, Xu C, Liao S, Roeder RG, Tu X. Structural basis for evolutionarily conserved interactions between TFIIS and Paf1C. Int J Biol Macromol 2023; 253:126764. [PMID: 37696373 PMCID: PMC11164251 DOI: 10.1016/j.ijbiomac.2023.126764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The elongation factor TFIIS interacts with Paf1C complex to facilitate processive transcription by Pol II. We here determined the crystal structure of the trypanosoma TFIIS LW domain in a complex with the LFG motif of Leo1, as well as the structures of apo-form TFIIS LW domains from trypanosoma, yeast and human. We revealed that all three TFIIS LW domains possess a conserved hydrophobic core that mediates their interactions with Leo1. Intriguingly, the structural study revealed that trypanosoma Leo1 binding induces the TFIIS LW domain to undergo a conformational change reflected in the length and orientation of α6 helix that is absent in the yeast and human counterparts. These differences explain the higher binding affinity of the TFIIS LW domain interacting with Leo1 in trypanosoma than in yeast and human, and indicate species-specific variations in the interactions. Importantly, the interactions between the TFIIS LW domain and an LFG motif of Leo1 were found to be critical for TFIIS to anchor the entire Paf1C complex. Thus, in addition to revealing a detailed structural basis for the TFIIS-Paf1C interaction, our studies also shed light on the origin and evolution of the roles of TFIIS and Paf1C complex in regulation of transcription elongation.
Collapse
Affiliation(s)
- Jie Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China; Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, PR China
| | - Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yuzhu Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Rui Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China; Department of Anthropotomy and Histoembryology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, PR China
| | - Meng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Zhongliang Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Yating Diwu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Shanhui Liao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Xiaoming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China.
| |
Collapse
|
4
|
Guo C, Alfaro-Aco R, Zhang C, Russell RW, Petry S, Polenova T. Structural basis of protein condensation on microtubules underlying branching microtubule nucleation. Nat Commun 2023; 14:3682. [PMID: 37344496 PMCID: PMC10284871 DOI: 10.1038/s41467-023-39176-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Targeting protein for Xklp2 (TPX2) is a key factor that stimulates branching microtubule nucleation during cell division. Upon binding to microtubules (MTs), TPX2 forms condensates via liquid-liquid phase separation, which facilitates recruitment of microtubule nucleation factors and tubulin. We report the structure of the TPX2 C-terminal minimal active domain (TPX2α5-α7) on the microtubule lattice determined by magic-angle-spinning NMR. We demonstrate that TPX2α5-α7 forms a co-condensate with soluble tubulin on microtubules and binds to MTs between two adjacent protofilaments and at the intersection of four tubulin heterodimers. These interactions stabilize the microtubules and promote the recruitment of tubulin. Our results reveal that TPX2α5-α7 is disordered in solution and adopts a folded structure on MTs, indicating that TPX2α5-α7 undergoes structural changes from unfolded to folded states upon binding to microtubules. The aromatic residues form dense interactions in the core, which stabilize folding of TPX2α5-α7 on microtubules. This work informs on how the phase-separated TPX2α5-α7 behaves on microtubules and represents an atomic-level structural characterization of a protein that is involved in a condensate on cytoskeletal filaments.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Chunting Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
5
|
Vedel IM, Prestel A, Zhang Z, Skawinska NT, Stark H, Harris P, Kragelund BB, Peters GHJ. Structural characterization of human tryptophan hydroxylase 2 reveals that L-Phe is superior to L-Trp as the regulatory domain ligand. Structure 2023:S0969-2126(23)00127-2. [PMID: 37119821 DOI: 10.1016/j.str.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Tryptophan hydroxylase 2 (TPH2) catalyzes the rate-limiting step in serotonin biosynthesis in the brain. Consequently, regulation of TPH2 is relevant for serotonin-related diseases, yet the regulatory mechanism of TPH2 is poorly understood and structural and dynamical insights are missing. We use NMR spectroscopy to determine the structure of a 47 N-terminally truncated variant of the regulatory domain (RD) dimer of human TPH2 in complex with L-Phe, and show that L-Phe is the superior RD ligand compared with the natural substrate, L-Trp. Using cryo-EM, we obtain a low-resolution structure of a similarly truncated variant of the complete tetrameric enzyme with dimerized RDs. The cryo-EM two-dimensional (2D) class averages additionally indicate that the RDs are dynamic in the tetramer and likely exist in a monomer-dimer equilibrium. Our results provide structural information on the RD as an isolated domain and in the TPH2 tetramer, which will facilitate future elucidation of TPH2's regulatory mechanism.
Collapse
Affiliation(s)
- Ida M Vedel
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Andreas Prestel
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Zhenwei Zhang
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Natalia T Skawinska
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Pernille Harris
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Gaurav AK, Afrin M, Yang X, Saha A, Sayeed SKA, Pan X, Ji Z, Wong KB, Zhang M, Zhao Y, Li B. The RRM-mediated RNA binding activity in T. brucei RAP1 is essential for VSG monoallelic expression. Nat Commun 2023; 14:1576. [PMID: 36949076 PMCID: PMC10033678 DOI: 10.1038/s41467-023-37307-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Trypanosoma brucei is a protozoan parasite that causes human African trypanosomiasis. Its major surface antigen VSG is expressed from subtelomeric loci in a strictly monoallelic manner. We previously showed that the telomere protein TbRAP1 binds dsDNA through its 737RKRRR741 patch to silence VSGs globally. How TbRAP1 permits expression of the single active VSG is unknown. Through NMR structural analysis, we unexpectedly identify an RNA Recognition Motif (RRM) in TbRAP1, which is unprecedented for RAP1 homologs. Assisted by the 737RKRRR741 patch, TbRAP1 RRM recognizes consensus sequences of VSG 3'UTRs in vitro and binds the active VSG RNA in vivo. Mutating conserved RRM residues abolishes the RNA binding activity, significantly decreases the active VSG RNA level, and derepresses silent VSGs. The competition between TbRAP1's RNA and dsDNA binding activities suggests a VSG monoallelic expression mechanism in which the active VSG's abundant RNA antagonizes TbRAP1's silencing effect, thereby sustaining its full-level expression.
Collapse
Grants
- R01 AI066095 NIAID NIH HHS
- S10 OD025252 NIH HHS
- Research Grants Council grants PolyU 151062/18M, 15103819, 15106421, R5050-18 and AoE/M-09/12, Shenzhen Basic Research Program of China (JCYJ20170818104619974, JCYJ20210324133803009) (PI, Zhao).
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | NIH Office of the Director (OD)
- Research Grants Council, University Grants Committee (RGC, UGC)
- Research Grants Council grants PolyU 151062/18M, 15103819, 15106421, R5050-18 and AoE/M-09/12 (Zhao), Shenzhen Basic Research Programs of China JCYJ20170818104619974 & JCYJ20210324133803009 (Zhao). Shenzhen Basic Research Program of China JCYJ20220818100215033 (Zhang). Research Grants Council grant C4041-18E (Wong, Zhang, Zhao).
Collapse
Affiliation(s)
- Amit Kumar Gaurav
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Marjia Afrin
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA
- Institute for Stem cell Biology and Regenerative Medicine, Stanford School of medicine, Stanford University, Palo Alto, CA, 94305, USA
| | - Xian Yang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, 28029, Spain
| | - S K Abdus Sayeed
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA
| | - Xuehua Pan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China
| | - Zeyang Ji
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Sarkar S, Runge B, Russell RW, Movellan KT, Calero D, Zeinalilathori S, Quinn CM, Lu M, Calero G, Gronenborn AM, Polenova T. Atomic-Resolution Structure of SARS-CoV-2 Nucleocapsid Protein N-Terminal Domain. J Am Chem Soc 2022; 144:10543-10555. [PMID: 35638584 PMCID: PMC9173677 DOI: 10.1021/jacs.2c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The nucleocapsid (N) protein is one of the four structural proteins of the SARS-CoV-2 virus and plays a crucial role in viral genome organization and, hence, replication and pathogenicity. The N-terminal domain (NNTD) binds to the genomic RNA and thus comprises a potential target for inhibitor and vaccine development. We determined the atomic-resolution structure of crystalline NNTD by integrating solid-state magic angle spinning (MAS) NMR and X-ray diffraction. Our combined approach provides atomic details of protein packing interfaces as well as information about flexible regions as the N- and C-termini and the functionally important RNA binding, β-hairpin loop. In addition, ultrafast (100 kHz) MAS 1H-detected experiments permitted the assignment of side-chain proton chemical shifts not available by other means. The present structure offers guidance for designing therapeutic interventions against the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sucharita Sarkar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Brent Runge
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Ryan W. Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Kumar Tekwani Movellan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Daniel Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Somayeh Zeinalilathori
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Guillermo Calero
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
8
|
Friis Theisen F, Salladini E, Davidsen R, Jo Rasmussen C, Staby L, Kragelund BB, Skriver K. αα-hub coregulator structure and flexibility determine transcription factor binding and selection in regulatory interactomes. J Biol Chem 2022; 298:101963. [PMID: 35452682 PMCID: PMC9127584 DOI: 10.1016/j.jbc.2022.101963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.
Collapse
Affiliation(s)
- Frederik Friis Theisen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Edoardo Salladini
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Davidsen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Jo Rasmussen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Staby
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Borcik CG, Eason IR, Yekefallah M, Amani R, Han R, Vanderloop BH, Wylie BJ. A Cholesterol Dimer Stabilizes the Inactivated State of an Inward-Rectifier Potassium Channel. Angew Chem Int Ed Engl 2022; 61:e202112232. [PMID: 34985791 PMCID: PMC8957755 DOI: 10.1002/anie.202112232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Cholesterol oligomers reside in multiple membrane protein X-ray crystal structures. Yet, there is no direct link between these oligomers and a biological function. Here we present the structural and functional details of a cholesterol dimer that stabilizes the inactivated state of an inward-rectifier potassium channel KirBac1.1. K+ efflux assays confirm that high cholesterol concentration reduces K+ conductance. We then determine the structure of the cholesterol-KirBac1.1 complex using Xplor-NIH simulated annealing calculations driven by solid-state NMR distance measurements. These calculations identified an α-α cholesterol dimer docked to a cleft formed by adjacent subunits of the homotetrameric protein. We compare these results to coarse grain molecular dynamics simulations. This is one of the first examples of a cholesterol oligomer performing a distinct biological function and structural characterization of a conserved promiscuous lipid binding region.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Isaac R Eason
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ruixian Han
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
10
|
Li X, Fan JS, Shi M, Lai CC, Li J, Meng Q, Yang D. C-Terminal Domains of Spider Silk Proteins Having Divergent Structures but Conserved Functional Roles. Biomacromolecules 2022; 23:1643-1651. [PMID: 35312302 DOI: 10.1021/acs.biomac.1c01513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spider silk is self-assembled from silk proteins or spidroins. C-terminal domains (CTDs) of various types of spidroins are relatively conserved in amino acid sequences and are suggested to adopt similar structures and perform similar functional roles in spidroin storage and silk formation. Here, we solved the structure of the CTD from a capture-spiral silk protein (CTDFl) and characterized its stability and fibril formation in the presence and absence of a reducing agent at different pH values. CTDFl adopts a dimeric structure with 8 helices, but the CTDs of other types of spidroins exist in a domain-swapped dimeric structure with 10 helices. Despite the structural differences, CTDFl is pH-responsive in stability and fibril formation, similar to the CTDs from minor and major ampullate spidroins. Thus, the functional role of CTDs in silk fiber formation seems conserved. Comparing wild-type CTDFl and its mutants, we found that the pH-responsive behavior results from the protonation of H76, which is conserved from different spider species. In addition, the fibril formation rate of CTDFl correlates with its instability, suggesting that structural changes are involved in fibril formation.
Collapse
Affiliation(s)
- Xue Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Mengqi Shi
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Chong Cheong Lai
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Jiaxin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Qing Meng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
11
|
Borcik CG, Eason IR, Yekefallah M, Amani R, Han R, Vanderloop BH, Wylie BJ. A Cholesterol Dimer Stabilizes the Inactivated State of an Inward‐Rectifier Potassium Channel. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Collin G. Borcik
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Isaac R. Eason
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Reza Amani
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Ruixian Han
- Department of Biochemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Boden H. Vanderloop
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| |
Collapse
|
12
|
Martinsen JH, Saar D, Fernandes CB, Schuler B, Bugge K, Kragelund BB. Structure, Dynamics and Stability of the Globular Domain of Human Linker Histone H1.0 and the Role of Positive Charges. Protein Sci 2022; 31:918-932. [PMID: 35066947 PMCID: PMC8927875 DOI: 10.1002/pro.4281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Linker histone H1 (H1) is an abundant chromatin‐binding protein that acts as an epigenetic regulator binding to nucleosomes and altering chromatin structures and dynamics. Nonetheless, the mechanistic details of its function remain poorly understood. Recent work suggest that the number and position of charged side chains on the globular domain (GD) of H1 influence chromatin structure and hence gene repression. Here, we solved the solution structure of the unbound GD of human H1.0, revealing that the structure is almost completely unperturbed by complex formation, except for a loop connecting two antiparallel β‐strands. We further quantified the role of the many positive charges of the GD for its structure and conformational stability through the analysis of 11 charge variants. We find that modulating the number of charges has little effect on the structure, but the stability is affected, resulting in a difference in melting temperature of 26 K between GD of net charge +5 versus +13. This result suggests that the large number of positive charges on H1‐GDs have evolved for function rather than structure and high stability. The stabilization of the GD upon binding to DNA can thus be expected to have a pronounced electrostatic component, a contribution that is amenable to modulation by posttranslational modifications, especially acetylation and phosphorylation. PDB Code(s): 6hq1;
Collapse
Affiliation(s)
- Jacob H Martinsen
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Ole Maaloes Vej 5, DK-.2200, Copenhagen N, Denmark
| | - Daniel Saar
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Ole Maaloes Vej 5, DK-.2200, Copenhagen N, Denmark
| | - Catarina B Fernandes
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Ole Maaloes Vej 5, DK-.2200, Copenhagen N, Denmark
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Department of Physics, Winterthurerstrasse 190, 8057 University of Zurich, Zurich, Switzerland
| | - Katrine Bugge
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Ole Maaloes Vej 5, DK-.2200, Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN and the Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Ole Maaloes Vej 5, DK-.2200, Copenhagen N, Denmark
| |
Collapse
|
13
|
Mechanism of negative membrane curvature generation by I-BAR domains. Structure 2021; 29:1440-1452.e4. [PMID: 34520736 DOI: 10.1016/j.str.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
The membrane sculpting ability of BAR domains has been attributed to the intrinsic curvature of their banana-shaped dimeric structure. However, there is often a mismatch between this intrinsic curvature and the diameter of the membrane tubules generated. I-BAR domains are especially mysterious since they are almost flat but generate high negative membrane curvature. Here, we use atomistic implicit-solvent computer modeling to show that the membrane bending of the IRSp53 I-BAR domain is dictated by its higher oligomeric structure, whose curvature is completely unrelated to the intrinsic curvature of the dimer. Two other I-BARs give similar results, whereas a flat F-BAR sheet develops a concave membrane-binding interface, consistent with its observed positive membrane curvature generation. Laterally interacting helical spirals of I-BAR dimers on tube interiors are stable and have an enhanced binding energy that is sufficient for membrane bending to experimentally observed tubule diameters at a reasonable surface density.
Collapse
|
14
|
Amani R, Schwieters CD, Borcik CG, Eason IR, Han R, Harding BD, Wylie BJ. Water Accessibility Refinement of the Extended Structure of KirBac1.1 in the Closed State. Front Mol Biosci 2021; 8:772855. [PMID: 34917650 PMCID: PMC8669819 DOI: 10.3389/fmolb.2021.772855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
NMR structures of membrane proteins are often hampered by poor chemical shift dispersion and internal dynamics which limit resolved distance restraints. However, the ordering and topology of these systems can be defined with site-specific water or lipid proximity. Membrane protein water accessibility surface area is often investigated as a topological function via solid-state NMR. Here we leverage water-edited solid-state NMR measurements in simulated annealing calculations to refine a membrane protein structure. This is demonstrated on the inward rectifier K+ channel KirBac1.1 found in Burkholderia pseudomallei. KirBac1.1 is homologous to human Kir channels, sharing a nearly identical fold. Like many existing Kir channel crystal structures, the 1p7b crystal structure is incomplete, missing 85 out of 333 residues, including the N-terminus and C-terminus. We measure solid-state NMR water proximity information and use this for refinement of KirBac1.1 using the Xplor-NIH structure determination program. Along with predicted dihedral angles and sparse intra- and inter-subunit distances, we refined the residues 1-300 to atomic resolution. All structural quality metrics indicate these restraints are a powerful way forward to solve high quality structures of membrane proteins using NMR.
Collapse
Affiliation(s)
- Reza Amani
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institutes of Digestive Diseases and Kidneys, NIH, Bethesda, MD, United States
| | - Collin G. Borcik
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Isaac R. Eason
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Ruixian Han
- University of Wisconsin-Madison, Department of Biochemistry and Chemistry, Madison, WI, United States
| | - Benjamin D. Harding
- University of Wisconsin-Madison, Department of Biochemistry and Chemistry, Madison, WI, United States
- Biophysics Program, University of Wisconsin at Madison, Madison, WI, United States
| | - Benjamin J. Wylie
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| |
Collapse
|
15
|
Sjøgaard-Frich LM, Prestel A, Pedersen ES, Severin M, Kristensen KK, Olsen JG, Kragelund BB, Pedersen SF. Dynamic Na +/H + exchanger 1 (NHE1) - calmodulin complexes of varying stoichiometry and structure regulate Ca 2+-dependent NHE1 activation. eLife 2021; 10:60889. [PMID: 33655882 PMCID: PMC8009664 DOI: 10.7554/elife.60889] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Abstract
Calmodulin (CaM) engages in Ca2+-dependent interactions with numerous proteins, including a still incompletely understood physical and functional interaction with the human Na+/H+-exchanger NHE1. Using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimetry, and fibroblasts stably expressing wildtype and mutant NHE1, we discovered multiple accessible states of this functionally important complex existing in different NHE1:CaM stoichiometries and structures. We determined the NMR solution structure of a ternary complex in which CaM links two NHE1 cytosolic tails. In vitro, stoichiometries and affinities could be tuned by variations in NHE1:CaM ratio and calcium ([Ca2+]) and by phosphorylation of S648 in the first CaM-binding α-helix. In cells, Ca2+-CaM-induced NHE1 activity was reduced by mimicking S648 phosphorylation and by mutation of the first CaM-binding α-helix, whereas it was unaffected by inhibition of Akt, one of several kinases phosphorylating S648. Our results demonstrate a diversity of NHE1:CaM interaction modes and suggest that CaM may contribute to NHE1 dimerization and thereby augment NHE1 regulation. We propose that a similar structural diversity is of relevance to many other CaM complexes.
Collapse
Affiliation(s)
- Lise M Sjøgaard-Frich
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Emilie S Pedersen
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Johan G Olsen
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Fungal Wound Healing through Instantaneous Protoplasmic Gelation. Curr Biol 2021; 31:271-282.e5. [DOI: 10.1016/j.cub.2020.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
|
17
|
Zhang J, Fan JS, Li S, Yang Y, Sun P, Zhu Q, Wang J, Jiang B, Yang D, Liu M. Structural basis of DNA binding to human YB-1 cold shock domain regulated by phosphorylation. Nucleic Acids Res 2020; 48:9361-9371. [PMID: 32710623 PMCID: PMC7498358 DOI: 10.1093/nar/gkaa619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Human Y-box binding protein 1 (YB-1) is a multifunctional protein and overexpressed in many types of cancer. It specifically recognizes DNA/RNA through a cold shock domain (CSD) and regulates nucleic acid metabolism. The C-terminal extension of CSD and the phosphorylation of S102 are indispensable for YB-1 function. Until now, the roles of the C-terminal extension and phosphorylation in gene transcription and translation are still largely unknown. Here, we solved the structure of human YB-1 CSD with a C-terminal extension sequence (CSDex). The structure reveals that the extension interacts with several residues in the conventional CSD and adopts a rigid structure instead of being disordered. Either deletion of this extension or phosphorylation of S102 destabilizes the protein and results in partial unfolding. Structural characterization of CSDex in complex with a ssDNA heptamer shows that all the seven nucleotides are involved in DNA-protein interactions and the C-terminal extension provides a unique DNA binding site. Our DNA-binding study indicates that CSDex can recognize more DNA sequences than previously thought and the phosphorylation reduces its binding to ssDNA dramatically. Our results suggest that gene transcription and translation can be regulated by changing the affinity of CSDex binding to DNA and RNA through phosphorylation, respectively.
Collapse
Affiliation(s)
- Jingfeng Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Peng Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Qinjun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jiannan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| |
Collapse
|
18
|
Solution structure of TbUfm1 from Trypanosoma brucei and its binding to TbUba5. J Struct Biol 2020; 212:107580. [PMID: 32693018 DOI: 10.1016/j.jsb.2020.107580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022]
Abstract
Ubiquitin-like proteins are conserved in eukaryotes and involved in numerous cellular processes. Ufm1 is proved to play important roles in endoplasmic reticulum homeostasis, vesicle transportation and embryonic development. Enzyme cascade of Ufm1 is similar to that of ubiquitin. Mature Ufm1 is activated and conjugated to substrates by assistance of Ufm1 activating enzyme Uba5 (E1), Ufm1 conjugating enzyme Ufc1 (E2), and Ufm1 ligating enzyme Ufl1 (E3). Here, we determined the solution structure of TbUfm1 from Trypanosoma brucei (T. brucei) by NMR spectroscopy and explored the interactions between TbUfm1 and TbUba5/TbUfc1/TbUfl1. TbUfm1 adopts a typical β-grasp fold, which partially wraps a central α-helix and the other two helixes. NMR chemical shift perturbation indicated that TbUfm1 interacts with TbUba5 via a hydrophobic pocket formed by α1α2β1β2. Although the structure and Uba5-interaction mode of TbUfm1 are conserved in Ufm1 proteins, there are also some differences, which might reflect the potential diversity of Ufm1 in evolution and biological functions.
Collapse
|
19
|
Chakraborty R, Fan JS, Lai CC, Raghuvamsi PV, Chee PX, Anand GS, Yang D. Structural Basis of Oligomerization of N-Terminal Domain of Spider Aciniform Silk Protein. Int J Mol Sci 2020; 21:ijms21124466. [PMID: 32586030 PMCID: PMC7352312 DOI: 10.3390/ijms21124466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023] Open
Abstract
Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen–deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.
Collapse
|
20
|
Spitzenkörper assembly mechanisms reveal conserved features of fungal and metazoan polarity scaffolds. Nat Commun 2020; 11:2830. [PMID: 32503980 PMCID: PMC7275032 DOI: 10.1038/s41467-020-16712-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
The Spitzenkörper (SPK) constitutes a collection of secretory vesicles and polarity-related proteins intimately associated with polarized growth of fungal hyphae. Many SPK-localized proteins are known, but their assembly and dynamics remain poorly understood. Here, we identify protein-protein interaction cascades leading to assembly of two SPK scaffolds and recruitment of diverse effectors in Neurospora crassa. Both scaffolds are transported to the SPK by the myosin V motor (MYO-5), with the coiled-coil protein SPZ-1 acting as cargo adaptor. Neither scaffold appears to be required for accumulation of SPK secretory vesicles. One scaffold consists of Leashin-2 (LAH-2), which is required for SPK localization of the signalling kinase COT-1 and the glycolysis enzyme GPI-1. The other scaffold comprises a complex of Janus-1 (JNS-1) and the polarisome protein SPA-2. Via its Spa homology domain (SHD), SPA-2 recruits a calponin domain-containing F-actin effector (CCP-1). The SHD NMR structure reveals a conserved surface groove required for effector binding. Similarities between SPA-2/JNS-1 and the metazoan GIT/PIX complex identify foundational features of the cell polarity apparatus that predate the fungal-metazoan divergence. The Spitzenkörper (SPK) is a polarized accumulation of proteins and secretory vesicles associated with tip growth of fungal hyphae. Here, Zheng et al. study SPK assembly and dynamics, identify SPK protein scaffolds and associated proteins, and reveal similarities with other scaffolds from metazoans.
Collapse
|
21
|
Comert F, Greenwood A, Maramba J, Acevedo R, Lucas L, Kulasinghe T, Cairns LS, Wen Y, Fu R, Hammer J, Blazyk J, Sukharev S, Cotten ML, Mihailescu M. The host-defense peptide piscidin P1 reorganizes lipid domains in membranes and decreases activation energies in mechanosensitive ion channels. J Biol Chem 2019; 294:18557-18570. [PMID: 31619519 PMCID: PMC6901303 DOI: 10.1074/jbc.ra119.010232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Indexed: 11/06/2022] Open
Abstract
The host-defense peptide (HDP) piscidin 1 (P1), isolated from the mast cells of striped bass, has potent activities against bacteria, viruses, fungi, and cancer cells and can also modulate the activity of membrane receptors. Given its broad pharmacological potential, here we used several approaches to better understand its interactions with multicomponent bilayers representing models of bacterial (phosphatidylethanolamine (PE)/phosphatidylglycerol) and mammalian (phosphatidylcholine/cholesterol (PC/Chol)) membranes. Using solid-state NMR, we solved the structure of P1 bound to PC/Chol and compared it with that of P3, a less potent homolog. The comparison disclosed that although both peptides are interfacially bound and α-helical, they differ in bilayer orientations and depths of insertion, and these differences depend on bilayer composition. Although Chol is thought to make mammalian membranes less susceptible to HDP-mediated destabilization, we found that Chol does not affect the permeabilization effects of P1. X-ray diffraction experiments revealed that both piscidins produce a demixing effect in PC/Chol membranes by increasing the fraction of the Chol-depleted phase. Furthermore, P1 increased the temperature required for the lamellar-to-hexagonal phase transition in PE bilayers, suggesting that it imposes positive membrane curvature. Patch-clamp measurements on the inner Escherichia coli membrane showed that P1 and P3, at concentrations sufficient for antimicrobial activity, substantially decrease the activating tension for bacterial mechanosensitive channels. This indicated that piscidins can cause lipid redistribution and restructuring in the microenvironment near proteins. We conclude that the mechanism of piscidin's antimicrobial activity extends beyond simple membrane destabilization, helping to rationalize its broader spectrum of pharmacological effects.
Collapse
Affiliation(s)
- Fatih Comert
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Alexander Greenwood
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23185
| | - Joseph Maramba
- Biology Department, University of Maryland, College Park, Maryland 20742
| | - Roderico Acevedo
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Laura Lucas
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Thulasi Kulasinghe
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Leah S Cairns
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Yi Wen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Janet Hammer
- Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701
| | - Jack Blazyk
- Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701
| | - Sergei Sukharev
- Biology Department, University of Maryland, College Park, Maryland 20742
| | - Myriam L Cotten
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23185.
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850.
| |
Collapse
|
22
|
Tuttle LM, Pacheco D, Warfield L, Luo J, Ranish J, Hahn S, Klevit RE. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex. Cell Rep 2019; 22:3251-3264. [PMID: 29562181 PMCID: PMC5908246 DOI: 10.1016/j.celrep.2018.02.097] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 02/25/2018] [Indexed: 11/12/2022] Open
Abstract
Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements.
Collapse
Affiliation(s)
- Lisa M Tuttle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Derek Pacheco
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Linda Warfield
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jie Luo
- The Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jeff Ranish
- The Institute for Systems Biology, Seattle, WA 98109, USA
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Structure and evolution of the 4-helix bundle domain of Zuotin, a J-domain protein co-chaperone of Hsp70. PLoS One 2019; 14:e0217098. [PMID: 31091298 PMCID: PMC6519820 DOI: 10.1371/journal.pone.0217098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 11/28/2022] Open
Abstract
The J-domain protein Zuotin is a multi-domain eukaryotic Hsp70 co-chaperone. Though it is primarily ribosome-associated, positioned at the exit of the 60S subunit tunnel where it promotes folding of nascent polypeptide chains, Zuotin also has off-ribosome functions. Domains of Zuotin needed for 60S association and interaction with Hsp70 are conserved in eukaryotes. However, whether the 4-helix bundle (4HB) domain is conserved remains an open question. We undertook evolutionary and structural approaches to clarify this issue. We found that the 4HB segment of human Zuotin also forms a bundle of 4 helices. The positive charge of Helix I, which in Saccharomyces cerevisiae is responsible for interaction with the 40S subunit, is particularly conserved. However, the C-termini of fungal and human 4HBs are not similar. In fungi the C-terminal segment forms a plug that folds back into the bundle; in S. cerevisiae it plays an important role in bundle stability and, off the ribosome, in transcriptional activation. In human, C-terminal helix IV of the 4HB is extended, protruding from the bundle. This extension serves as a linker to the regulatory SANT domains, which are present in animals, plants and protists, but not fungi. Further analysis of Zuotin sequences revealed that the plug likely arose as a result of genomic rearrangement upon SANT domain loss early in the fungal lineage. In the lineage leading to S. cerevisiae, the 4HB was subjected to positive selection with the plug becoming increasingly hydrophobic. Eventually, these hydrophobic plug residues were coopted for a novel regulatory function—activation of a recently emerged transcription factor, Pdr1. Our data suggests that Zuotin evolved off-ribosome functions twice—once involving SANT domains, then later in fungi, after SANT domain loss, by coopting the hydrophobic plug. Zuotin serves as an example of complex intertwining of molecular chaperone function and cell regulation.
Collapse
|
24
|
Kano H, Toyama Y, Imai S, Iwahashi Y, Mase Y, Yokogawa M, Osawa M, Shimada I. Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Nat Commun 2019; 10:2008. [PMID: 31043612 PMCID: PMC6494913 DOI: 10.1038/s41467-019-10038-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/12/2019] [Indexed: 01/26/2023] Open
Abstract
G protein-gated inwardly rectifying potassium channel (GIRK) plays a key role in regulating neurotransmission. GIRK is opened by the direct binding of the G protein βγ subunit (Gβγ), which is released from the heterotrimeric G protein (Gαβγ) upon the activation of G protein-coupled receptors (GPCRs). GIRK contributes to precise cellular responses by specifically and efficiently responding to the Gi/o-coupled GPCRs. However, the detailed mechanisms underlying this family-specific and efficient activation are largely unknown. Here, we investigate the structural mechanism underlying the Gi/o family-specific activation of GIRK, by combining cell-based BRET experiments and NMR analyses in a reconstituted membrane environment. We show that the interaction formed by the αA helix of Gαi/o mediates the formation of the Gαi/oβγ-GIRK complex, which is responsible for the family-specific activation of GIRK. We also present a model structure of the Gαi/oβγ-GIRK complex, which provides the molecular basis underlying the specific and efficient regulation of GIRK.
Collapse
Affiliation(s)
- Hanaho Kano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuta Iwahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoko Mase
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Pharmacy, Keio University, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Pharmacy, Keio University, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
25
|
Lapin J, Nevzorov AA. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta. JOURNAL OF BIOMOLECULAR NMR 2019; 73:229-244. [PMID: 31076969 DOI: 10.1007/s10858-019-00251-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Multidimensional solid-state NMR spectra of oriented membrane proteins can be used to infer the backbone torsion angles and hence the overall protein fold by measuring dipolar couplings and chemical shift anisotropies, which depend on the orientation of each peptide plane with respect to the external magnetic field. However, multiple peptide plane orientations can be consistent with a given set of angular restraints. This ambiguity is further exacerbated by experimental uncertainty in obtaining and interpreting such restraints. The previously developed algorithms for structure calculations using angular restraints typically involve a sequential walkthrough along the backbone to find the torsion angles between the consecutive peptide plane orientations that are consistent with the experimental data. This method is sensitive to experimental uncertainty in interpreting the peak positions of as low as ± 10 Hz, often yielding high structural RMSDs for the calculated structures. Here we present a significantly improved version of the algorithm which includes the fitting of several peptide planes at once in order to prevent propagation of error along the backbone. In addition, a protocol has been devised for filtering the structural solutions using Rosetta scoring functions in order to find the structures that both fit the spectrum and satisfy bioinformatics restraints. The robustness of the new algorithm has been tested using synthetic angular restraints generated from the known structures for two proteins: a soluble protein 2gb1 (56 residues), chosen for its diverse secondary structure elements, i.e. an alpha-helix and two beta-sheets, and a membrane protein 4a2n, from which the first two transmembrane helices (having a total of 64 residues) have been used. Extensive simulations have been performed by varying the number of fitted planes, experimental error, and the number of NMR dimensions. It has been found that simultaneously fitting two peptide planes always shifted the distribution of the calculated structures toward lower structural RMSD values as compared to fitting a single torsion-angle pair. For each protein, irrespective of the simulation parameters, Rosetta was able to distinguish the most plausible structures, often having structural RMSDs lower than 2 Å with respect to the original structure. This study establishes a framework for de-novo protein structure prediction using a combination of solid-state NMR angular restraints and bioinformatics.
Collapse
Affiliation(s)
- Joel Lapin
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA.
| |
Collapse
|
26
|
Bugge K, Staby L, Kemplen KR, O'Shea C, Bendsen SK, Jensen MK, Olsen JG, Skriver K, Kragelund BB. Structure of Radical-Induced Cell Death1 Hub Domain Reveals a Common αα-Scaffold for Disorder in Transcriptional Networks. Structure 2018; 26:734-746.e7. [DOI: 10.1016/j.str.2018.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
27
|
Solution structure of sperm lysin yields novel insights into molecular dynamics of rapid protein evolution. Proc Natl Acad Sci U S A 2018; 115:1310-1315. [PMID: 29348201 DOI: 10.1073/pnas.1709061115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.
Collapse
|
28
|
Abstract
Xplor-NIH is a popular software package for biomolecular structure determination from NMR (and other) experimental data. This chapter illustrates its use with the de novo structure determination of the B1 domain of streptococcal protein G (GB1), based on distances from nuclear Overhauser effects, torsion angles from scalar couplings, and bond-vector orientations from residual dipolar couplings. Including Xplor-NIH's latest developments, a complete structure calculation script is discussed in detail, and is intended to serve as a basis for other applications.
Collapse
|
29
|
Schwieters CD, Bermejo GA, Clore GM. Xplor-NIH for molecular structure determination from NMR and other data sources. Protein Sci 2017; 27:26-40. [PMID: 28766807 DOI: 10.1002/pro.3248] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 11/10/2022]
Abstract
Xplor-NIH is a popular software package for biomolecular structure determination from nuclear magnetic resonance (NMR) and other data sources. Here, some of Xplor-NIH's most useful data-associated energy terms are reviewed, including newer alternative options for using residual dipolar coupling data in structure calculations. Further, we discuss new developments in the implementation of strict symmetry for the calculation of symmetric homo-oligomers, and in the representation of the system as an ensemble of structures to account for motional effects. Finally, the different available force fields are presented, among other Xplor-NIH capabilities.
Collapse
Affiliation(s)
- Charles D Schwieters
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, 20892-5624
| | - Guillermo A Bermejo
- Imaging Sciences Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, 20892-5624
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520
| |
Collapse
|
30
|
Dutta SK, Yao Y, Marassi FM. Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers. J Phys Chem B 2017; 121:7561-7570. [PMID: 28726410 DOI: 10.1021/acs.jpcb.7b03941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yersinia pestis the causative agent of plague, is highly pathogenic and poses very high risk to public health. The outer membrane protein Ail (Adhesion invasion locus) is one of the most highly expressed proteins on the cell surface of Y. pestis, and a major target for the development of medical countermeasures. Ail is essential for microbial virulence and is critical for promoting the survival of Y. pestis in serum. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but the protein's activity is influenced by the detergents in these samples, underscoring the importance of the surrounding environment for structure-activity studies. Here we describe the backbone structure of Ail, determined in lipid bilayer nanodiscs, using solution NMR spectroscopy. We also present solid-state NMR data obtained for Ail in membranes containing lipopolysaccharide (LPS), a major component of the bacterial outer membranes. The protein in lipid bilayers, adopts the same eight-stranded β-barrel fold observed in the crystalline and micellar states. The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15N transverse relaxation rate. The results provide information about the way in which an outer membrane protein inserts and functions in the bacterial membrane.
Collapse
Affiliation(s)
- Samit Kumar Dutta
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Applications of NMR to membrane proteins. Arch Biochem Biophys 2017; 628:92-101. [PMID: 28529197 DOI: 10.1016/j.abb.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/14/2023]
Abstract
Membrane proteins present a challenge for structural biology. In this article, we review some of the recent developments that advance the application of NMR to membrane proteins, with emphasis on structural studies in detergent-free, lipid bilayer samples that resemble the native environment. NMR spectroscopy is not only ideally suited for structure determination of membrane proteins in hydrated lipid bilayer membranes, but also highly complementary to the other principal techniques based on X-ray and electron diffraction. Recent advances in NMR instrumentation, spectroscopic methods, computational methods, and sample preparations are driving exciting new efforts in membrane protein structural biology.
Collapse
|
32
|
Tseng R, Goularte NF, Chavan A, Luu J, Cohen SE, Chang YG, Heisler J, Li S, Michael AK, Tripathi S, Golden SS, LiWang A, Partch CL. Structural basis of the day-night transition in a bacterial circadian clock. Science 2017; 355:1174-1180. [PMID: 28302851 PMCID: PMC5441561 DOI: 10.1126/science.aag2516] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022]
Abstract
Circadian clocks are ubiquitous timing systems that induce rhythms of biological activities in synchrony with night and day. In cyanobacteria, timing is generated by a posttranslational clock consisting of KaiA, KaiB, and KaiC proteins and a set of output signaling proteins, SasA and CikA, which transduce this rhythm to control gene expression. Here, we describe crystal and nuclear magnetic resonance structures of KaiB-KaiC,KaiA-KaiB-KaiC, and CikA-KaiB complexes. They reveal how the metamorphic properties of KaiB, a protein that adopts two distinct folds, and the post-adenosine triphosphate hydrolysis state of KaiC create a hub around which nighttime signaling events revolve, including inactivation of KaiA and reciprocal regulation of the mutually antagonistic signaling proteins, SasA and CikA.
Collapse
Affiliation(s)
- Roger Tseng
- Quantitative and Systems Biology, University of California, Merced, CA 95343, USA
| | - Nicolette F Goularte
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Archana Chavan
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Jansen Luu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Susan E Cohen
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yong-Gang Chang
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Joel Heisler
- Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alicia K Michael
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andy LiWang
- Quantitative and Systems Biology, University of California, Merced, CA 95343, USA.
- School of Natural Sciences, University of California, Merced, CA 95343, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Tian Y, Schwieters CD, Opella SJ, Marassi FM. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH. JOURNAL OF BIOMOLECULAR NMR 2017; 67:35-49. [PMID: 28035651 PMCID: PMC5487259 DOI: 10.1007/s10858-016-0082-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.
Collapse
Affiliation(s)
- Ye Tian
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Charles D Schwieters
- Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD, 20892-5624, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0307, USA
| | - Francesca M Marassi
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Wessel SR, Cornilescu CC, Cornilescu G, Metz A, Leroux M, Hu K, Sandler SJ, Markley JL, Keck JL. Structure and Function of the PriC DNA Replication Restart Protein. J Biol Chem 2016; 291:18384-96. [PMID: 27382050 DOI: 10.1074/jbc.m116.738781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
Collisions between DNA replication complexes (replisomes) and barriers such as damaged DNA or tightly bound protein complexes can dissociate replisomes from chromosomes prematurely. Replisomes must be reloaded under these circumstances to avoid incomplete replication and cell death. Bacteria have evolved multiple pathways that initiate DNA replication restart by recognizing and remodeling abandoned replication forks and reloading the replicative helicase. In vitro, the simplest of these pathways is mediated by the single-domain PriC protein, which, along with the DnaC helicase loader, can load the DnaB replicative helicase onto DNA bound by the single-stranded DNA (ssDNA)-binding protein (SSB). Previous biochemical studies have identified PriC residues that mediate interactions with ssDNA and SSB. However, the mechanisms by which PriC drives DNA replication restart have remained poorly defined due to the limited structural information available for PriC. Here, we report the NMR structure of full-length PriC from Cronobacter sakazakii PriC forms a compact bundle of α-helices that brings together residues involved in ssDNA and SSB binding at adjacent sites on the protein surface. Disruption of these interaction sites and of other conserved residues leads to decreased DnaB helicase loading onto SSB-bound DNA. We also demonstrate that PriC can directly interact with DnaB and the DnaB·DnaC complex. These data lead to a model in which PriC acts as a scaffold for recruiting DnaB·DnaC to SSB/ssDNA sites present at stalled replication forks.
Collapse
Affiliation(s)
- Sarah R Wessel
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Claudia C Cornilescu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Gabriel Cornilescu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Alice Metz
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Maxime Leroux
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Kaifeng Hu
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Steven J Sandler
- the Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - John L Markley
- the National Magnetic Resonance Facility at Madison and the Biochemistry Department, University of Wisconsin, Madison, Wisconsin 53706, and
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706,
| |
Collapse
|
35
|
Lee W, Petit CM, Cornilescu G, Stark JL, Markley JL. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data. JOURNAL OF BIOMOLECULAR NMR 2016; 65:51-7. [PMID: 27169728 PMCID: PMC4921114 DOI: 10.1007/s10858-016-0036-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/06/2016] [Indexed: 05/21/2023]
Abstract
We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27-98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.
Collapse
Affiliation(s)
- Woonghee Lee
- National Magnetic Resonance Facility at Madison and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Chad M Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jaime L Stark
- National Magnetic Resonance Facility at Madison and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
36
|
Cornilescu G, Didychuk AL, Rodgers ML, Michael LA, Burke JE, Montemayor EJ, Hoskins AA, Butcher SE. Structural Analysis of Multi-Helical RNAs by NMR-SAXS/WAXS: Application to the U4/U6 di-snRNA. J Mol Biol 2016; 428:777-789. [PMID: 26655855 PMCID: PMC4790120 DOI: 10.1016/j.jmb.2015.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 01/17/2023]
Abstract
NMR and SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) are highly complementary approaches for the analysis of RNA structure in solution. Here we describe an efficient NMR-SAXS/WAXS approach for structural investigation of multi-helical RNAs. We illustrate this approach by determining the overall fold of a 92-nt 3-helix junction from the U4/U6 di-snRNA. The U4/U6 di-snRNA is conserved in eukaryotes and is part of the U4/U6.U5 tri-snRNP, a large ribonucleoprotein complex that comprises a major subunit of the assembled spliceosome. Helical orientations can be determined by X-ray scattering data alone, but the addition of NMR RDC (residual dipolar coupling) restraints improves the structure models. RDCs were measured in two different external alignment media and also by magnetic susceptibility anisotropy. The resulting alignment tensors are collinear, which is a previously noted problem for nucleic acids. Including WAXS data in the calculations produces models with significantly better fits to the scattering data. In solution, the U4/U6 di-snRNA forms a 3-helix junction with a planar Y-shaped structure and has no detectable tertiary interactions. Single-molecule Förster resonance energy transfer data support the observed topology. A comparison with the recently determined cryo-electron microscopy structure of the U4/U6.U5 tri-snRNP illustrates how proteins scaffold the RNA and dramatically alter the geometry of the U4/U6 3-helix junction.
Collapse
Affiliation(s)
- Gabriel Cornilescu
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Margaret L Rodgers
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren A Michael
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jordan E Burke
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Montemayor
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Jureka AS, Kleinpeter AB, Cornilescu G, Cornilescu CC, Petit CM. Structural Basis for a Novel Interaction between the NS1 Protein Derived from the 1918 Influenza Virus and RIG-I. Structure 2015; 23:2001-10. [PMID: 26365801 PMCID: PMC4635043 DOI: 10.1016/j.str.2015.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
The influenza non-structural protein 1 (NS1) plays a critical role in antagonizing the innate immune response to infection. One interaction that facilitates this function is between NS1 and RIG-I, one of the main sensors of influenza virus infection. While NS1 and RIG-I are known to interact, it is currently unclear whether this interaction is direct or if it is mediated by other biomolecules. Here we demonstrate a direct, strain-dependent interaction between the NS1 RNA binding domain (NS1(RBD)) of the influenza A/Brevig Mission/1918 H1N1 (1918(H1N1)) virus and the second caspase activation and recruitment domain of RIG-I. Solving the solution structure of the 1918(H1N1) NS1(RBD) revealed features in a functionally novel region that may facilitate the observed interaction. The biophysical and structural data herein suggest a possible mechanism by which strain-specific differences in NS1 modulate influenza virulence.
Collapse
Affiliation(s)
- Alexander S Jureka
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alex B Kleinpeter
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claudia C Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chad M Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
38
|
Marassi FM, Ding Y, Schwieters CD, Tian Y, Yao Y. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation. JOURNAL OF BIOMOLECULAR NMR 2015; 63:59-65. [PMID: 26143069 PMCID: PMC4577439 DOI: 10.1007/s10858-015-9963-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential.
Collapse
Affiliation(s)
- Francesca M Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD, 20892-5624, USA
| | - Ye Tian
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
39
|
Tian Y, Schwieters CD, Opella SJ, Marassi FM. A Practical Implicit Membrane Potential for NMR Structure Calculations of Membrane Proteins. Biophys J 2015; 109:574-85. [PMID: 26244739 PMCID: PMC4572468 DOI: 10.1016/j.bpj.2015.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 01/22/2023] Open
Abstract
The highly anisotropic environment of the lipid bilayer membrane imposes significant constraints on the structures and functions of membrane proteins. However, NMR structure calculations typically use a simple repulsive potential that neglects the effects of solvation and electrostatics, because explicit atomic representation of the solvent and lipid molecules is computationally expensive and impractical for routine NMR-restrained calculations that start from completely extended polypeptide templates. Here, we describe the extension of a previously described implicit solvation potential, eefxPot, to include a membrane model for NMR-restrained calculations of membrane protein structures in XPLOR-NIH. The key components of eefxPot are an energy term for solvation free energy that works together with other nonbonded energy functions, a dedicated force field for conformational and nonbonded protein interaction parameters, and a membrane function that modulates the solvation free energy and dielectric screening as a function of the atomic distance from the membrane center, relative to the membrane thickness. Initial results obtained for membrane proteins with structures determined experimentally in lipid bilayer membranes show that eefxPot affords significant improvements in structural quality, accuracy, and precision. Calculations with eefxPot are straightforward to implement and can be used to both fold and refine structures, as well as to run unrestrained molecular-dynamics simulations. The potential is entirely compatible with the full range of experimental restraints measured by various techniques. Overall, it provides a useful and practical way to calculate membrane protein structures in a physically realistic environment.
Collapse
Affiliation(s)
- Ye Tian
- Sanford-Burnham Medical Research Institute, La Jolla, California; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | | |
Collapse
|