1
|
He J, Wang Y. Superficial white matter microstructural imaging method based on time-space fractional-order diffusion. Phys Med Biol 2024; 69:065010. [PMID: 38394673 DOI: 10.1088/1361-6560/ad2ca1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Objective. Microstructure imaging based on diffusion magnetic resonance signal is an advanced imaging technique that enablesin vivomapping of the brain's microstructure. Superficial white matter (SWM) plays an important role in brain development, maturation, and aging, while fewer microstructure imaging methods address the SWM due to its complexity. Therefore, this study aims to develop a diffusion propagation model to investigate the microstructural characteristics of the SWM region.Approach. In this paper, we hypothesize that the effect of cell membrane permeability and the water exchange between soma and dendrites cannot be neglected for typical clinical diffusion times (20 ms
Collapse
Affiliation(s)
- Jianglin He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Yuanjun Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
2
|
Yang Z, Fang C, Li JR. Incorporating interface permeability into the diffusion MRI signal representation while using impermeable Laplace eigenfunctions. Phys Med Biol 2023; 68:175036. [PMID: 37579758 DOI: 10.1088/1361-6560/acf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Objective. The complex-valued transverse magnetization due to diffusion-encoding magnetic field gradients acting on a permeable medium can be modeled by the Bloch-Torrey partial differential equation. The diffusion magnetic resonance imaging (MRI) signal has a representation in the basis of the Laplace eigenfunctions of the medium. However, in order to estimate the permeability coefficient from diffusion MRI data, it is desirable that the forward solution can be calculated efficiently for many values of permeability.Approach. In this paper we propose a new formulation of the permeable diffusion MRI signal representation in the basis of the Laplace eigenfunctions of the same medium where the interfaces are made impermeable.Main results.We proved the theoretical equivalence between our new formulation and the original formulation in the case that the full eigendecomposition is used. We validated our method numerically and showed promising numerical results when a partial eigendecomposition is used. Two diffusion MRI sequences were used to illustrate the numerical validity of our new method.Significance.Our approach means that the same basis (the impermeable set) can be used for all permeability values, which reduces the computational time significantly, enabling the study of the effects of the permeability coefficient on the diffusion MRI signal in the future.
Collapse
Affiliation(s)
- Zheyi Yang
- Equipe IDEFIX, INRIA Saclay, UMA, ENSTA PARIS, Palaiseau, France
| | - Chengran Fang
- Equipe IDEFIX, INRIA Saclay, UMA, ENSTA PARIS, Palaiseau, France
| | - Jing-Rebecca Li
- Equipe IDEFIX, INRIA Saclay, UMA, ENSTA PARIS, Palaiseau, France
| |
Collapse
|
3
|
Bogdanskii V, Pavlyukevich I, Pilipenko A. Limit behaviour of random walks on Ζm with two-sided membrane. ESAIM-PROBAB STAT 2022. [DOI: 10.1051/ps/2022009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We study Markov chains on Z m , m ≥ 2, that behave like a standard symmetric random walk outside of the hyperplane (membrane) H = {0} × Z m-1 . The exit probabilities from the membrane (penetration probabilities) H are periodic and also depend on the incoming direction to H, what makes the membrane H two-sided. Moreover, sliding along the membrane is allowed. We show that the natural scaling limit of such Markov chains is a m-dimensional diffusion whose first coordinate is a skew Brownian motion and the other m-1 coordinates is a Brownian motion with a singular drift controlled by the local time of the first coordinate at 0. In the proof we utilize a martingale characterization of the Walsh Brownian motion and determine the effective permeability and slide direction. Eventually, a similar convergence theorem is established for the one-sided membrane without slides and random iid penetration probabilities.
Collapse
|
4
|
Random walk diffusion simulations in semi-permeable layered media with varying diffusivity. Sci Rep 2022; 12:10759. [PMID: 35750717 PMCID: PMC9232609 DOI: 10.1038/s41598-022-14541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
In this paper we present random walk based solutions to diffusion in semi-permeable layered media with varying diffusivity. We propose a novel transit model for solving the interaction of random walkers with a membrane. This hybrid model is based on treating the membrane permeability and the step change in diffusion coefficient as two interactions separated by an infinitesimally small layer. By conducting an extensive analytical flux analysis, the performance of our hybrid model is compared with a commonly used membrane transit model (reference model). Numerical simulations demonstrate the limitations of the reference model in dealing with step changes in diffusivity and show the capability of the hybrid model to overcome this limitation and to offer substantial gains in computational efficiency. The suitability of both random walk transit models for the application to simulations of diffusion tensor cardiovascular magnetic resonance (DT-CMR) imaging is assessed in a histology-based domain relevant to DT-CMR. In order to demonstrate the usefulness of the new hybrid model for other possible applications, we also consider a larger range of permeabilities beyond those commonly found in biological tissues.
Collapse
|
5
|
Agdestein SD, Tran TN, Li JR. Practical computation of the diffusion MRI signal based on Laplace eigenfunctions: permeable interfaces. NMR IN BIOMEDICINE 2022; 35:e4646. [PMID: 34796990 DOI: 10.1002/nbm.4646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch-Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold-standard reference model for the diffusion MRI signal arising from different tissue micro-structures of interest. A closed form representation of this reference diffusion MRI signal, called matrix formalism, which makes explicit the link between the Laplace eigenvalues and eigenfunctions of the tissue geometry and its diffusion MRI signal, was derived 20 years ago. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion-encoding sequences and b-values at negligible additional cost. In a previous publication, we presented a simulation framework that we implemented inside the MATLAB-based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for biological cells subject to impermeable membrane boundary conditions. In this work, we extend our simulation framework to include geometries that contain permeable cell membranes. We describe the new computational techniques that allowed this generalization and we analyze the effects of the magnitude of the permeability coefficient on the eigendecomposition of the diffusion and Bloch-Torrey operators. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling of diffusion MRI.
Collapse
Affiliation(s)
| | | | - Jing-Rebecca Li
- INRIA Saclay-Equipe DEFI, CMAP, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
6
|
Ślęzak J, Burov S. From diffusion in compartmentalized media to non-Gaussian random walks. Sci Rep 2021; 11:5101. [PMID: 33658556 PMCID: PMC7930099 DOI: 10.1038/s41598-021-83364-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023] Open
Abstract
In this work we establish a link between two different phenomena that were studied in a large and growing number of biological, composite and soft media: the diffusion in compartmentalized environment and the non-Gaussian diffusion that exhibits linear or power-law growth of the mean square displacement joined by the exponential shape of the positional probability density. We explore a microscopic model that gives rise to transient confinement, similar to the one observed for hop-diffusion on top of a cellular membrane. The compartmentalization of the media is achieved by introducing randomly placed, identical barriers. Using this model of a heterogeneous medium we derive a general class of random walks with simple jump rules that are dictated by the geometry of the compartments. Exponential decay of positional probability density is observed and we also quantify the significant decrease of the long time diffusion constant. Our results suggest that the observed exponential decay is a general feature of the transient regime in compartmentalized media.
Collapse
Affiliation(s)
- Jakub Ślęzak
- Physics Department, Bar-Ilan University, Ramat Gan, 5290002 Israel
| | - Stanislav Burov
- Physics Department, Bar-Ilan University, Ramat Gan, 5290002 Israel
| |
Collapse
|
7
|
Lee HH, Papaioannou A, Novikov DS, Fieremans E. In vivo observation and biophysical interpretation of time-dependent diffusion in human cortical gray matter. Neuroimage 2020; 222:117054. [PMID: 32585341 PMCID: PMC7736473 DOI: 10.1016/j.neuroimage.2020.117054] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
The dependence of the diffusion MRI signal on the diffusion time t is a hallmark of tissue microstructure at the scale of the diffusion length. Here we measure the time-dependence of the mean diffusivity D(t) and mean kurtosis K(t) in cortical gray matter and in 25 gray matter sub-regions, in 10 healthy subjects. Significant diffusivity and kurtosis time-dependence is observed for t=21.2-100 ms, and is characterized by a power-law tail ∼t-ϑ with dynamical exponent ϑ. To interpret our measurements, we systematize the relevant scenarios and mechanisms for diffusion time-dependence in the brain. Using the effective medium theory formalism, we derive an exact relation between the power-law tails in D(t) and K(t). The estimated dynamical exponent ϑ≃1/2 in both D(t) and K(t) is consistent with one-dimensional diffusion in the presence of randomly positioned restrictions along neurites. We analyze the short-range disordered statistics of synapses on axon collaterals in the cortex, and perform one-dimensional Monte Carlo simulations of diffusion restricted by permeable barriers with a similar randomness in their placement, to confirm the ϑ=1/2 exponent. In contrast, the Kärger model of exchange is less consistent with the data since it does not capture the diffusivity time-dependence, and the estimated exchange time from K(t) falls below our measured t-range. Although we cannot exclude exchange as a contributing factor, we argue that structural disorder along neurites is mainly responsible for the observed time-dependence of diffusivity and kurtosis. Our observation and theoretical interpretation of the t-1/2 tail in D(t) and K(t) altogether establish the sensitivity of a macroscopic MRI signal to micrometer-scale structural heterogeneities along neurites in human gray matter in vivo.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA.
| | - Antonios Papaioannou
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| |
Collapse
|
8
|
Hill I, Palombo M, Santin M, Branzoli F, Philippe AC, Wassermann D, Aigrot MS, Stankoff B, Baron-Van Evercooren A, Felfli M, Langui D, Zhang H, Lehericy S, Petiet A, Alexander DC, Ciccarelli O, Drobnjak I. Machine learning based white matter models with permeability: An experimental study in cuprizone treated in-vivo mouse model of axonal demyelination. Neuroimage 2020; 224:117425. [PMID: 33035669 DOI: 10.1016/j.neuroimage.2020.117425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/14/2023] Open
Abstract
The intra-axonal water exchange time (τi), a parameter associated with axonal permeability, could be an important biomarker for understanding and treating demyelinating pathologies such as Multiple Sclerosis. Diffusion-Weighted MRI (DW-MRI) is sensitive to changes in permeability; however, the parameter has so far remained elusive due to the lack of general biophysical models that incorporate it. Machine learning based computational models can potentially be used to estimate such parameters. Recently, for the first time, a theoretical framework using a random forest (RF) regressor suggests that this is a promising new approach for permeability estimation. In this study, we adopt such an approach and for the first time experimentally investigate it for demyelinating pathologies through direct comparison with histology. We construct a computational model using Monte Carlo simulations and an RF regressor in order to learn a mapping between features derived from DW-MRI signals and ground truth microstructure parameters. We test our model in simulations, and find strong correlations between the predicted and ground truth parameters (intra-axonal volume fraction f: R2 =0.99, τi: R2 =0.84, intrinsic diffusivity d: R2 =0.99). We then apply the model in-vivo, on a controlled cuprizone (CPZ) mouse model of demyelination, comparing the results from two cohorts of mice, CPZ (N=8) and healthy age-matched wild-type (WT, N=8). We find that the RF model estimates sensible microstructure parameters for both groups, matching values found in literature. Furthermore, we perform histology for both groups using electron microscopy (EM), measuring the thickness of the myelin sheath as a surrogate for exchange time. Histology results show that our RF model estimates are very strongly correlated with the EM measurements (ρ = 0.98 for f, ρ = 0.82 for τi). Finally, we find a statistically significant decrease in τi in all three regions of the corpus callosum (splenium/genu/body) of the CPZ cohort (<τi>=310ms/330ms/350ms) compared to the WT group (<τi>=370ms/370ms/380ms). This is in line with our expectations that τi is lower in regions where the myelin sheath is damaged, as axonal membranes become more permeable. Overall, these results demonstrate, for the first time experimentally and in vivo, that a computational model learned from simulations can reliably estimate microstructure parameters, including the axonal permeability .
Collapse
Affiliation(s)
- Ioana Hill
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK
| | - Marco Palombo
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.
| | - Mathieu Santin
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, Centre de NeuroImagerie de Recherche, CENIR, Paris, France
| | - Francesca Branzoli
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, Centre de NeuroImagerie de Recherche, CENIR, Paris, France
| | - Anne-Charlotte Philippe
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Demian Wassermann
- Université Côte d'Azur, Inria, Sophia-Antipolis, France; Parietal, CEA, Inria, Saclay, Île-de-France
| | - Marie-Stephane Aigrot
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Bruno Stankoff
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France; AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Mehdi Felfli
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Dominique Langui
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Hui Zhang
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK
| | - Stephane Lehericy
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, Centre de NeuroImagerie de Recherche, CENIR, Paris, France
| | - Alexandra Petiet
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, Centre de NeuroImagerie de Recherche, CENIR, Paris, France
| | - Daniel C Alexander
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK
| | - Olga Ciccarelli
- Dept. of Neuroinflammation, University College London, Queen Square Institute of Neurology, University College London, London, UK
| | - Ivana Drobnjak
- Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK
| |
Collapse
|
9
|
Forien R. Gene flow across geographical barriers — scaling limits of random walks with obstacles. Stoch Process Their Appl 2019. [DOI: 10.1016/j.spa.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Moutal N, Nilsson M, Topgaard D, Grebenkov D. The Kärger vs bi-exponential model: Theoretical insights and experimental validations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:72-78. [PMID: 30223153 DOI: 10.1016/j.jmr.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
We revise three common models accounting for water exchange in pulsed-gradient spin-echo measurements: a bi-exponential model with time-dependent water fractions, the Kärger model, and a modified Kärger model designed for restricted diffusion, e.g. inside cells. The three models are compared and applied to experimental data from yeast cell suspensions. The Kärger model and the modified Kärger model yield very close results and accurately fit the data. The bi-exponential model, although less rigorous, has a natural physical interpretation and suggests a new experimental modality to estimate the water exchange time.
Collapse
Affiliation(s)
- Nicolas Moutal
- PMC, CNRS - Ecole Polytechnique, F-91128 Palaiseau, France.
| | - Markus Nilsson
- Physical Chemistry, Lund University, P.O.B. 124, SE-22100 Lund, Sweden
| | - Daniel Topgaard
- Physical Chemistry, Lund University, P.O.B. 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
11
|
Ringbauer H, Kolesnikov A, Field DL, Barton NH. Estimating Barriers to Gene Flow from Distorted Isolation-by-Distance Patterns. Genetics 2018; 208:1231-1245. [PMID: 29311149 PMCID: PMC5844333 DOI: 10.1534/genetics.117.300638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/23/2017] [Indexed: 11/18/2022] Open
Abstract
In continuous populations with local migration, nearby pairs of individuals have on average more similar genotypes than geographically well-separated pairs. A barrier to gene flow distorts this classical pattern of isolation by distance. Genetic similarity is decreased for sample pairs on different sides of the barrier and increased for pairs on the same side near the barrier. Here, we introduce an inference scheme that uses this signal to detect and estimate the strength of a linear barrier to gene flow in two dimensions. We use a diffusion approximation to model the effects of a barrier on the geographic spread of ancestry backward in time. This approach allows us to calculate the chance of recent coalescence and probability of identity by descent. We introduce an inference scheme that fits these theoretical results to the geographic covariance structure of bialleleic genetic markers. It can estimate the strength of the barrier as well as several demographic parameters. We investigate the power of our inference scheme to detect barriers by applying it to a wide range of simulated data. We also showcase an example application to an Antirrhinum majus (snapdragon) flower-color hybrid zone, where we do not detect any signal of a strong genome-wide barrier to gene flow.
Collapse
Affiliation(s)
- Harald Ringbauer
- Institute of Science and Technology Austria, Klosterneuburg A-3400, Austria
| | | | - David L Field
- Department of Botany and Biodiversity Research, University of Vienna, A-1030, Austria
| | - Nicholas H Barton
- Institute of Science and Technology Austria, Klosterneuburg A-3400, Austria
| |
Collapse
|
12
|
Nedjati-Gilani GL, Schneider T, Hall MG, Cawley N, Hill I, Ciccarelli O, Drobnjak I, Wheeler-Kingshott CAMG, Alexander DC. Machine learning based compartment models with permeability for white matter microstructure imaging. Neuroimage 2017; 150:119-135. [PMID: 28188915 DOI: 10.1016/j.neuroimage.2017.02.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/20/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022] Open
Abstract
Some microstructure parameters, such as permeability, remain elusive because mathematical models that express their relationship to the MR signal accurately are intractable. Here, we propose to use computational models learned from simulations to estimate these parameters. We demonstrate the approach in an example which estimates water residence time in brain white matter. The residence time τi of water inside axons is a potentially important biomarker for white matter pathologies of the human central nervous system, as myelin damage is hypothesised to affect axonal permeability, and thus τi. We construct a computational model using Monte Carlo simulations and machine learning (specifically here a random forest regressor) in order to learn a mapping between features derived from diffusion weighted MR signals and ground truth microstructure parameters, including τi. We test our numerical model using simulated and in vivo human brain data. Simulation results show that estimated parameters have strong correlations with the ground truth parameters (R2={0.88,0.95,0.82,0.99}) for volume fraction, residence time, axon radius and diffusivity respectively), and provide a marked improvement over the most widely used Kärger model (R2={0.75,0.60,0.11,0.99}). The trained model also estimates sensible microstructure parameters from in vivo human brain data acquired from healthy controls, matching values found in literature, and provides better reproducibility than the Kärger model on both the voxel and ROI level. Finally, we acquire data from two Multiple Sclerosis (MS) patients and compare to the values in healthy subjects. We find that in the splenium of corpus callosum (CC-S) the estimate of the residence time is 0.57±0.05s for the healthy subjects, while in the MS patient with a lesion in CC-S it is 0.33±0.12s in the normal appearing white matter (NAWM) and 0.19±0.11s in the lesion. In the corticospinal tracts (CST) the estimate of the residence time is 0.52±0.09s for the healthy subjects, while in the MS patient with a lesion in CST it is 0.56±0.05s in the NAWM and 0.13±0.09s in the lesion. These results agree with our expectations that the residence time in lesions would be lower than in NAWM because the loss of myelin should increase permeability. Overall, we find parameter estimates in the two MS patients consistent with expectations from the pathology of MS lesions demonstrating the clinical potential of this new technique.
Collapse
Affiliation(s)
- Gemma L Nedjati-Gilani
- Centre for Medical Image Computing and Dept of Computer Science, University College London, Gower Street, London WC1E 6BT, UK; MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Torben Schneider
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
| | - Matt G Hall
- Institute of Child Health, University College London, London, UK
| | - Niamh Cawley
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
| | - Ioana Hill
- Centre for Medical Image Computing and Dept of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - Olga Ciccarelli
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
| | - Ivana Drobnjak
- Centre for Medical Image Computing and Dept of Computer Science, University College London, Gower Street, London WC1E 6BT, UK.
| | - Claudia A M Gandini Wheeler-Kingshott
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK; Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Daniel C Alexander
- Centre for Medical Image Computing and Dept of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
13
|
Grebenkov DS. Analytical representations of the spread harmonic measure density. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052108. [PMID: 26066120 DOI: 10.1103/physreve.91.052108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 06/04/2023]
Abstract
We study the spread harmonic measure that characterizes the spatial distribution of reaction events on a partially reactive surface. For Euclidean domains in which Brownian motion can be split into independent lateral and transverse displacements, we derive analytical formulas for the spread harmonic measure density and analyze its asymptotic behavior. This analysis is applicable to slab domains, general cylindrical domains, and a half-space. We investigate the spreading effect due to multiple reflections on the surface, and the underlying role of finite reactivity. We discuss further extensions and applications of analytical results to describe Laplacian transfer phenomena such as permeation through semipermeable membranes, secondary current distribution on partially blocking electrodes, and surface relaxation in nuclear magnetic resonance.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, 91128 Palaiseau, France and St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| |
Collapse
|
14
|
Grebenkov DS. Exploring diffusion across permeable barriers at high gradients. II. Localization regime. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:164-176. [PMID: 25266755 DOI: 10.1016/j.jmr.2014.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Abstract
We present an analytical solution of the one-dimensional Bloch-Torrey equation for diffusion across multiple semi-permeable barrier. This solution generalizes the seminal work by Stoller, Happer, and Dyson, in which the non-Gaussian stretched-exponential behavior of the pulsed-gradient spin-echo (PGSE) signal was first predicted at high gradients in the so-called localization regime. We investigate how the diffusive exchange across a semi-permeable barrier modifies this asymptotic behavior, and explore the transition between the localization regime at low permeability and the Gaussian regime at high permeability. High gradients are suitable to spatially localize the contribution of the nuclei near the barrier and to enhance the sensitivity of the PGSE signal to the barrier permeability. The emergence of the localization regime for three-dimensional domains is discussed.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée, CNRS - Ecole Polytechnique, F-91128 Palaiseau, France.
| |
Collapse
|