1
|
Hinz Y, Böhmer R. Interplay of ethaline and water dynamics in a hydrated eutectic solvent: Deuteron and oxygen magnetic resonance studies of aqueous ethaline. J Chem Phys 2024; 161:234504. [PMID: 39698859 DOI: 10.1063/5.0244255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
For many technological processes, the impact of water addition on the properties of deep eutectic solvents is of central importance. In this context, the impact of hydration on the reorientational dynamics of the deep eutectic solvent (DES) ethaline, a 2:1 molar mixture of ethylene glycol and choline chloride, was studied. Its overall response was explored by means of shear mechanical rheology. To achieve component-selective insights into the dynamics of this material, isotope-edited deuteron and oxygen spin-lattice and spin-spin relaxometry, as well as stimulated-echo spectroscopy, were applied and yielded motional correlation times from above room temperature down to the highly viscous regime. For all temperatures, the cholinium anion was found to reorient about two times slower than ethylene glycol, while the water and the ethylene glycol molecules display very similar mobilities. While hydration enhances the component dynamics with respect to that of dry ethaline, the present findings reveal that it does not detectably increase the heterogeneity of the solvent. Merely, the time scale similarity that is found for the hydrogen bond donor and the water molecules over a particularly wide temperature range impressively attests to the stability of the native solvent structure in the "water-in-DES" regime.
Collapse
Affiliation(s)
- Yannik Hinz
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
2
|
Hinz Y, Beerwerth J, Böhmer R. Anion dynamics and motional decoupling in a glycerol-choline chloride deep eutectic solvent studied by one- and two-dimensional 35Cl NMR. Phys Chem Chem Phys 2023; 25:28130-28140. [PMID: 37818622 DOI: 10.1039/d3cp03668e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/12/2023]
Abstract
Chlorine-35 is among the few nuclides that provide an experimental handle on the anion dynamics in choline based deep eutectic solvents. By combining several nuclear magnetic resonance (NMR) techniques, the present work examines the Cl- motions within glyceline, a glycerol : choline chloride 2 : 1 solution, in a large temperature range down to the glass transition temperature Tg. The applied methods include spin relaxometry, second-order line shape analysis, as well as two-dimensional central-transition exchange and stimulated-echo spectroscopy. The finding of unstructured central-transition NMR spectra characterized by a relatively small average quadrupolar coupling attests to a highly disordered, essentially nondirectional anionic coordination in glyceline. For temperatures larger than about 1.3Tg the chlorine motions are well coupled to those of the glycerol and the choline moieties. At lower temperatures the local translational anion dynamics become Arrhenian and increasingly faster than the motion of glyceline's matrix molecules. Upon further cooling, the overall ionic conductivity continues to display a super-Arrhenius behavior, implying that the choline cations rather than the Cl anions dominate the long-range charge transport also near Tg.
Collapse
Affiliation(s)
- Yannik Hinz
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
3
|
Hoffmann L, Beerwerth J, Adjei-Körner M, Fuentes-Landete V, Tonauer CM, Loerting T, Böhmer R. Oxygen NMR of high-density and low-density amorphous ice. J Chem Phys 2022; 156:084503. [DOI: 10.1063/5.0080333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Using oxygen-17 as a nuclear probe, spin relaxometry was applied to study the high-density and low-density states of amorphous ice, covering temperatures below and somewhat above their glass transitions. These findings are put in perspective with results from deuteron nuclear magnetic resonance and with calculations based on dielectrically detected correlation times. This comparison reveals the presence of a wide distribution of correlation times. Furthermore, oxygen-17 central-transition echo spectra were recorded for wide ranges of temperature and pulse spacing. The spectra cannot be described by a single set of quadrupolar parameters, suggesting a distribution of H–O–H opening angles that is broader for high-density than for low-density amorphous ice. Simulations of the pulse separation dependent spin-echo spectra for various scenarios demonstrate that a small-step frequency diffusion process, assigned to the presence of homonuclear oxygen–oxygen interactions, determines the shape evolution of the pulse-separation-dependent spectra.
Collapse
Affiliation(s)
- Lars Hoffmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | | | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Christina M. Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
4
|
Dai Y, Wu G. Solid-State 17O NMR Studies of Sulfonate Jump Dynamics in Crystalline Sulfonic Acids: Insights into the Hydrogen Bonding Effect. J Phys Chem A 2020; 124:9597-9604. [PMID: 33151689 DOI: 10.1021/acs.jpca.0c08198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
We report variable-temperature (VT) 17O solid-state nuclear magnetic resonance (NMR) spectra for three crystalline sulfonic acids: l-cysteic acid monohydrate (CA), 3-pyridinesulfonic acid (PSA), and p-toluenesulfonic acid monohydrate (TSA). We were able to analyze the experimental VT 17O NMR spectra to obtain the activation barriers for SO3- jumps in these systems. Using the density functional-based tight-binding (DFTB) method, we performed potential energy surface scans for SO3- jumps in the crystal lattice of CA, PSA, and TSA, as well as for three related crystalline sulfonic acids (taurine, homotaurine, and 4-aminobutane-1-sulfonic acid) for which relevant 17O solid-state NMR data are available in the literature. The calculated activation barriers are in reasonable agreement with the experimental values. On the basis of the DFTB results, we hypothesized that activation barriers for SO3- jumps in the crystal lattice depend largely on the hydrogen bonding energy difference between the ground state and the transition state.
Collapse
Affiliation(s)
- Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
5
|
Hoffmann L, Beerwerth J, Greim D, Senker J, Sternemann C, Hiller W, Böhmer R. Reorientational dynamics of trimethoxyboroxine: A molecular glass former studied by dielectric spectroscopy and 11B nuclear magnetic resonance. J Chem Phys 2020; 152:034503. [PMID: 31968976 DOI: 10.1063/1.5129769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
In this work, trimethoxyboroxine (TMB) is identified as a small-molecule glass former. In its viscous liquid as well as glassy states, static and dynamic properties of TMB are explored using various techniques. It is found that, on average, the structure of the condensed TMB molecules deviates from threefold symmetry so that TMB's electric dipole moment is nonzero, thus rendering broadband dielectric spectroscopy applicable. This method reveals the super-Arrhenius dynamics that characterizes TMB above its glass transition, which occurs at about 204 K. To extend the temperature range in which the molecular dynamics can be studied, 11B nuclear magnetic resonance experiments are additionally carried out on rotating and stationary samples: Exploiting dynamic second-order shifts, spin-relaxation times, line shape effects, as well as stimulated-echo and two-dimensional exchange spectroscopy, a coherent picture regarding the dynamics of this glass former is gained.
Collapse
Affiliation(s)
- Lars Hoffmann
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Dominik Greim
- Anorganische Chemie III, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Jürgen Senker
- Anorganische Chemie III, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Christian Sternemann
- DELTA/Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Wolf Hiller
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
6
|
Wu G. 17O NMR studies of organic and biological molecules in aqueous solution and in the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:135-191. [PMID: 31779879 DOI: 10.1016/j.pnmrs.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
This review describes the latest developments in the field of 17O NMR spectroscopy of organic and biological molecules both in aqueous solution and in the solid state. In the first part of the review, a general theoretical description of the nuclear quadrupole relaxation process in isotropic liquids is presented at a mathematical level suitable for non-specialists. In addition to the first-order quadrupole interaction, the theory also includes additional relaxation mechanisms such as the second-order quadrupole interaction and its cross correlation with shielding anisotropy. This complete theoretical treatment allows one to assess the transverse relaxation rate (thus the line width) of NMR signals from half-integer quadrupolar nuclei in solution over the entire range of motion. On the basis of this theoretical framework, we discuss general features of quadrupole-central-transition (QCT) NMR, which is a particularly powerful method of studying biomolecules in the slow motion regime. Then we review recent advances in 17O QCT NMR studies of biological macromolecules in aqueous solution. The second part of the review is concerned with solid-state 17O NMR studies of organic and biological molecules. As a sequel to the previous review on the same subject [G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 52 (2008) 118-169], the current review provides a complete coverage of the literature published since 2008 in this area.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
7
|
Beerwerth J, Bierwirth SP, Adam J, Gainaru C, Böhmer R. Local and global dynamics of the viscous ion conductors 2Ca(NO3)2-3KNO3 and 2Ca(NO3)2-3RbNO3 probed by 87Rb nuclear magnetic resonance and shear rheology. J Chem Phys 2019; 150:194503. [DOI: 10.1063/1.5093973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - S. Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Jens Adam
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
8
|
Beerwerth J, Storek M, Greim D, Lueg J, Siegel R, Cetinkaya B, Hiller W, Zimmermann H, Senker J, Böhmer R. Two-site jumps in dimethyl sulfone studied by one- and two-dimensional 17O NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 288:84-94. [PMID: 29438834 DOI: 10.1016/j.jmr.2018.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/07/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Polycrystalline dimethyl sulfone is studied using central-transition oxygen-17 exchange NMR. The quadrupolar and chemical shift tensors are determined by combining quantum chemical calculations with line shape analyses of rigid-lattice spectra measured for stationary and rotating samples at several external magnetic fields. Quantum chemical computations predict that the largest principal axes of the chemical shift anisotropy and electrical field gradient tensors enclose an angle of about 73°. This prediction is successfully tested by comparison with absorption spectra recorded at three different external magnetic fields. The experimental one-dimensional motionally narrowed spectra and the two-dimensional exchange spectrum are compatible with model calculations involving jumps of the molecules about their two-fold symmetry axis. This motion is additionally investigated by means of two-time stimulated-echo spectroscopy which allows for a determination of motional correlation functions over a wider temperature range than previously reported using carbon and deuteron NMR. On the basis of suitable second-order quadrupolar frequency distributions, sin-sin stimulated-echo amplitudes are calculated for a two-site model in the limit of vanishing evolution time and compared with experimental findings. The present study thus establishes oxygen-17 NMR as a powerful method that will be particularly useful for the study of solids and liquids devoid of nuclei governed by first-order anisotropies.
Collapse
Affiliation(s)
- J Beerwerth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - M Storek
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - D Greim
- Anorganische Chemie III, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - J Lueg
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - R Siegel
- Anorganische Chemie III, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - B Cetinkaya
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - W Hiller
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - H Zimmermann
- Department of Biomolecular Mechanisms, Max Planck-Institut für Medizinische Forschung, 69120 Heidelberg, Germany
| | - J Senker
- Anorganische Chemie III, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
| |
Collapse
|
9
|
Hung I, Wu G, Gan Z. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:14-19. [PMID: 28027834 DOI: 10.1016/j.ssnmr.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/12/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 05/11/2023]
Abstract
NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature 17O NMR of solid NaNO3 in which the NO3- ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO3- ion jumps span eight orders of magnitude (102-1010s-1) covering both transitions of the dynamic 17O line shape.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
10
|
Adjei-Acheamfour M, Storek M, Böhmer R. Communication: Heterogeneous water dynamics on a clathrate hydrate lattice detected by multidimensional oxygen nuclear magnetic resonance. J Chem Phys 2017. [DOI: 10.1063/1.4983043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Michael Storek
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
11
|
Jessat T, Adjei-Acheamfour M, Storek M, Böhmer R. Submillimeter coils for stimulated-echo spectroscopy of a solid sodium ion conductor by nonselective excitation of MHz broad 23Na quadrupolar satellite spectra. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 82-83:16-21. [PMID: 28119198 DOI: 10.1016/j.ssnmr.2016.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/18/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 05/20/2023]
Abstract
In solids the detection of ionic motion covering the time range of milliseconds and longer is often accomplished using stimulated-echo spectroscopy. For spectral line widths much below or much above 1MHz nonselective or fully selective radio-frequency pulse excitation, respectively, is typically applied in such experiments. To enable the study of samples with quadrupolarly broadened satellite spectra featuring intermediate widths (in the lower MHz range) the present work exploits microcoils. Using such coils, stimulated-echo spectroscopy can be performed under conditions of nonselective excitation for instance with 23Na as a nuclear probe. Nutation experiments carried out used to assess the coil performance. The impact of second-order quadrupolar interactions is studied using explicit density-matrix calculations. The applicability of the present approach is successfully tested for a sodium orthophosphate based solid ion conductor.
Collapse
Affiliation(s)
- T Jessat
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - M Adjei-Acheamfour
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - M Storek
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany.
| |
Collapse
|
12
|
Wu G. Solid-State ¹⁷O NMR studies of organic and biological molecules: Recent advances and future directions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 73:1-14. [PMID: 26651417 DOI: 10.1016/j.ssnmr.2015.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/06/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 05/04/2023]
Abstract
This Trends article highlights the recent advances published between 2012 and 2015 in solid-state (17)O NMR for organic and biological molecules. New developments in the following areas are described: (1) new oxygen-containing functional groups, (2) metal organic frameworks, (3) pharmaceuticals, (4) probing molecular motion in organic solids, (5) dynamic nuclear polarization, and (6) paramagnetic coordination compounds. For each of these areas, the author offers his personal views on important problems to be solved and possible future directions.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
13
|
Adjei-Acheamfour M, Tilly JF, Beerwerth J, Böhmer R. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance. J Chem Phys 2015; 143:214201. [DOI: 10.1063/1.4936416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Julius F. Tilly
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|