1
|
Duong K, Moss E, Reichhardt C. Solid-state NMR compositional analysis of sputum from people with cystic fibrosis. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101975. [PMID: 39489104 DOI: 10.1016/j.ssnmr.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
People with the genetic disease cystic fibrosis (CF) often have chronic airway infections and produce airway secretions called sputum. A better understanding of sputum composition is desired in order to track changes in response to CF therapeutics and to improve laboratory models for the study of CF airway infections. The glycosylated protein mucin is a primary component. Along with extracellular DNA, mucin gives rise to the high viscoelasticity of sputum, which inhibits airway clearance and is thought to promote chronic airway infections in people with CF. Past studies of sputum composition identified additional biomolecular components of sputum including other proteins, both glycosylated and not glycosylated, free amino acids, and lipids. Typically, studies of sputum, as well as other complex biological materials, have focused on soluble or isolated components. Solid-state NMR is not limited to the study of soluble components. Instead, it can provide molecular-level information about insoluble biological samples. Additionally, solid-state NMR can provide information about sample composition without requiring any processing of the sample, eliminating the possibility of misestimating certain components due to insolubility or potential sample loss in isolation steps. In this study, we used both 13C and 31P CPMAS to investigate the total composition of sputum samples obtained from six people with CF. We compared these spectra to those of commercially available mucin, DNA, and phospholipid samples. Lastly, we performed complementary biochemical analyses to identify specific proteins present in the sputum samples. Overall, our findings provide insight into the composition of unprocessed sputum samples from people with CF, which can be used as a benchmark for future investigations of CF and infections in the airways of people with CF. Further, this study provides opportunities to expand the solid-state NMR approach to include dynamic nuclear polarization (DNP) to obtain high-resolution information of sputum and similar biological samples that are not feasible to isotopically enrich.
Collapse
Affiliation(s)
- Kathy Duong
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | - Evan Moss
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | - Courtney Reichhardt
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States.
| |
Collapse
|
2
|
Rampratap P, Lasorsa A, Arunachalam A, Kamperman M, Walvoort MTC, van der Wel PCA. Resolving Atomic-Level Dynamics and Interactions of High-Molecular-Weight Hyaluronic Acid by Multidimensional Solid-State NMR. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43317-43328. [PMID: 39121380 PMCID: PMC11345730 DOI: 10.1021/acsami.4c08428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
High-molecular-weight (HMW) hyaluronic acid (HA) is a highly abundant natural polysaccharide and a fundamental component of the extracellular matrix (ECM). Its size and concentration regulate tissues' macro- and microenvironments, and its upregulation is a hallmark feature of certain tumors. Yet, the conformational dynamics of HMW-HA and how it engages with the components of the ECM microenvironment remain poorly understood at the molecular level. Probing the molecular structure and dynamics of HMW polysaccharides in a hydrated, physiological-like environment is crucial and also technically challenging. Here, we deploy advanced magic-angle spinning (MAS) solid-state NMR spectroscopy in combination with isotopic enrichment to enable an in-depth study of HMW-HA to address this challenge. This approach resolves multiple coexisting HA conformations and dynamics as a function of environmental conditions. By combining 13C-labeled HA with unlabeled ECM components, we detect by MAS NMR HA-specific changes in global and local conformational dynamics as a consequence of hydration and ECM interactions. These measurements reveal atom-specific variations in the dynamics and structure of the N-acetylglucosamine moiety of HA. We discuss possible implications for interactions that stabilize the structure of HMW-HA and facilitate its recognition by HA-binding proteins. The described methods apply similarly to the studies of the molecular structure and dynamics of HA in tumor contexts and in other biological tissues as well as HMW-HA hydrogels and nanoparticles used for biomedical and/or pharmaceutical applications.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Alessia Lasorsa
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Abinaya Arunachalam
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Patrick C. A. van der Wel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
3
|
Chen R, Wang W, Yin R, Pan Y, Xu C, Gao N, Luo X, Zhao J. Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata. Mar Drugs 2023; 21:632. [PMID: 38132953 PMCID: PMC10744359 DOI: 10.3390/md21120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide β-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways.
Collapse
Affiliation(s)
- Ru Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Institute of Traditional Chinese Medicine and Materia Medica, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Ying Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Xiaodong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| |
Collapse
|
4
|
Liu X, Brčić J, Cassell GH, Cegelski L. CPMAS NMR platform for direct compositional analysis of mycobacterial cell-wall complexes and whole cells. JOURNAL OF MAGNETIC RESONANCE OPEN 2023; 16-17:100127. [PMID: 38125335 PMCID: PMC10732466 DOI: 10.1016/j.jmro.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tuberculosis and non-tuberculosis mycobacterial infections are rising each year and often result in chronic incurable disease. Important antibiotics target cell-wall biosynthesis, yet some mycobacteria are alarmingly resistant or tolerant to currently available antibiotics. This resistance is often attributed to assumed differences in composition of the complex cell wall of different mycobacterial strains and species. However, due to the highly crosslinked and insoluble nature of mycobacterial cell walls, direct comparative determinations of cell-wall composition pose a challenge to analysis through conventional biochemical analyses. We introduce an approach to directly observe the chemical composition of mycobacterial cell walls using solid-state NMR spectroscopy. 13C CPMAS spectra are provided of individual components (peptidoglycan, arabinogalactan, and mycolic acids) and of in situ cell-wall complexes. We assigned the spectroscopic contributions of each component in the cell-wall spectrum. We uncovered a higher arabinogalactan-to-peptidoglycan ratio in the cell wall of M. abscessus, an organism noted for its antibiotic resistance, relative to M. smegmatis. Furthermore, differentiating influences of different types of cell-wall targeting antibiotics were observed in spectra of antibiotic-treated whole cells. This platform will be of value in evaluating cell-wall composition and antibiotic activity among different mycobacteria and in considering the most effective combination treatment regimens.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Jasna Brčić
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Gail H. Cassell
- PAI Life Sciences Inc, Seattle WA 98102, United States
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, CA 94305, United States
| |
Collapse
|
5
|
Enriquez KT, Plummer WD, Neufer PD, Chazin WJ, Dupont WD, Skaar EP. Temporal modelling of the biofilm lifecycle (TMBL) establishes kinetic analysis of plate-based bacterial biofilm dynamics. J Microbiol Methods 2023; 212:106808. [PMID: 37595876 PMCID: PMC10528067 DOI: 10.1016/j.mimet.2023.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Bacterial biofilms are critical to pathogenesis and infection. They are associated with rising rates of antimicrobial resistance. Biofilms are correlated with worse clinical outcomes, making them important to infectious diseases research. There is a gap in knowledge surrounding biofilm kinetics and dynamics which makes biofilm research difficult to translate from bench to bedside. To address this gap, this work employs a well-characterized crystal violet biomass accrual and planktonic cell density assay across a clinically relevant time course and expands statistical analysis to include kinetic information in a protocol termed the TMBL (Temporal Mapping of the Biofilm Lifecycle) assay. TMBL's statistical framework quantitatively compares biofilm communities across time, species, and media conditions in a 96-well format. Measurements from TMBL can reliably be condensed into response features that inform the time-dependent behavior of adherent biomass and planktonic cell populations. Staphylococcus aureus and Pseudomonas aeruginosa biofilms were grown in conditions of metal starvation in nutrient-variable media to demonstrate the rigor and translational potential of this strategy. Significant differences in single-species biofilm formation are seen in metal-deplete conditions as compared to their controls which is consistent with the consensus literature on nutritional immunity that metal availability drives transcriptomic and metabolomic changes in numerous pathogens. Taken together, these results suggest that kinetic analysis of biofilm by TMBL represents a statistically and biologically rigorous approach to studying the biofilm lifecycle as a time-dependent process. In addition to current methods to study the impact of microbe and environmental factors on the biofilm lifecycle, this kinetic assay can inform biological discovery in biofilm formation and maintenance.
Collapse
Affiliation(s)
- Kyle T Enriquez
- Vanderbilt University Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States of America; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States of America; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - W Dale Plummer
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States of America
| | - Preston D Neufer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America; Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Walter J Chazin
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America; Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America; Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States of America
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States of America; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
6
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
7
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Gong PX, Wu YC, Chen X, Zhou ZL, Chen X, Lv SZ, You Y, Li HJ. Immunological effect of fucosylated chondroitin sulfate and its oligomers from Holothuria fuscogilva on RAW 264.7 cells. Carbohydr Polym 2022; 287:119362. [PMID: 35422306 DOI: 10.1016/j.carbpol.2022.119362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Fucosylated chondroitin sulfate was obtained from the sea cucumber Holothuria fuscogilva (FCShf). The structure was elucidated by NMR and HILIC-FTMS analysis. FCShf contained a chondroitin core chain [→3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1→]n, where the sulfation positions were the O-4 or O-6 of the GalNAc residues. The ratio of sulfated and non-sulfated GalNAc at O-6 was 1:2, while the ratio of GalNAc at O-4 was 1:1. 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S) were attached to the O-3 of GlcA with a molar ratio of 1.00: 0.62: 1.32. The FCShf could significantly promote the proliferative rate, NO production and neutral red uptake of RAW 264.7 cells within the concentration range of 10-300 μg/mL. Compared with the fucosylation and deacetylation degrees, the molecular weight of FCShf had markedly influence on the activation of RAW 264.7 cells. A decrease in molecular weight dramatically improved the immunoregulatory activities. Furthermore, FCShf activated RAW 264.7 cells through TLR-2/4-NF-κB pathway.
Collapse
Affiliation(s)
- Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Ze-Lin Zhou
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xi Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Shi-Zhong Lv
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yue You
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China; Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, PR China.
| |
Collapse
|
9
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Identification of a Novel Pyruvyltransferase Using 13C Solid-State Nuclear Magnetic Resonance To Analyze Rhizobial Exopolysaccharides. J Bacteriol 2021; 203:e0040321. [PMID: 34606371 DOI: 10.1128/jb.00403-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alphaproteobacterium Sinorhizobium meliloti secretes two acidic exopolysaccharides (EPSs), succinoglycan (EPSI) and galactoglucan (EPSII), which differentially enable it to adapt to a changing environment. Succinoglycan is essential for invasion of plant hosts and, thus, for the formation of nitrogen-fixing root nodules. Galactoglucan is critical for population-based behaviors such as swarming and biofilm formation and can facilitate invasion in the absence of succinoglycan on some host plants. The biosynthesis of galactoglucan is not as completely understood as that of succinoglycan. We devised a pipeline to identify putative pyruvyltransferase and acetyltransferase genes, construct genomic deletions in strains engineered to produce either succinoglycan or galactoglucan, and analyze EPS from mutant bacterial strains. EPS samples were examined by 13C cross-polarization magic-angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). CPMAS NMR is uniquely suited to defining chemical composition in complex samples and enables the detection and quantification of distinct EPS functional groups. Galactoglucan was isolated from mutant strains with deletions in five candidate acyl/acetyltransferase genes (exoZ, exoH, SMb20810, SMb21188, and SMa1016) and a putative pyruvyltransferase (wgaE or SMb21322). Most samples were similar in composition to wild-type EPSII by CPMAS NMR analysis. However, galactoglucan produced from a strain lacking wgaE exhibited a significant reduction in pyruvylation. Pyruvylation was restored through the ectopic expression of plasmid-borne wgaE. Our work has thus identified WgaE as a galactoglucan pyruvyltransferase. This exemplifies how the systematic combination of genetic analyses and solid-state NMR detection is a rapid means to identify genes responsible for modification of rhizobial exopolysaccharides. IMPORTANCE Nitrogen-fixing bacteria are crucial for geochemical cycles and global nitrogen nutrition. Symbioses between legumes and rhizobial bacteria establish root nodules, where bacteria convert dinitrogen to ammonia for plant utilization. Secreted exopolysaccharides (EPSs) produced by Sinorhizobium meliloti (succinoglycan and galactoglucan) play important roles in soil and plant environments. The biosynthesis of galactoglucan is not as well characterized as that of succinoglycan. We employed solid-state nuclear magnetic resonance (NMR) to examine intact EPS from wild-type and mutant S. meliloti strains. NMR analysis of EPS isolated from a wgaE gene mutant revealed a novel pyruvyltransferase that modifies galactoglucan. Few EPS pyruvyltransferases have been characterized. Our work provides insight into the biosynthesis of an important S. meliloti EPS and expands the knowledge of enzymes that modify polysaccharides.
Collapse
|
11
|
Gong PX, Li QY, Wu YC, Lu WY, Zeng J, Li HJ. Structural elucidation and antidiabetic activity of fucosylated chondroitin sulfate from sea cucumber Stichopus japonicas. Carbohydr Polym 2021; 262:117969. [PMID: 33838834 DOI: 10.1016/j.carbpol.2021.117969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
A fucosylated chondroitin sulfate was isolated from the body wall of sea cucumber Stichopus japonicus (FCSsj), whose structure was characterized by NMR spectroscopy and HILIC-FTMS. At the ratio of 1.00:0.26:0.65, three fucosyl residues were found: 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S), which were only linked to the O-3 of glucuronic acid residues (GlcA). Besides mono-fucosyl moieties, di-fucosyl branches, namely Fuc2,4Sα(1→3)Fuc4S, were also found to be attached to the O-3 of GlcA. The antidiabetic activity of FCSsj was evaluated using glucosamine induced insulin resistant (IR) Hep G2 cells in vitro. It was found that FCSsj significantly promoted the glucose uptake and glucose consumption of IR-Hep G2 cells in a dose-dependent manner, and could alleviate the cell damage. Furthermore, FCSsj could promote the glycogen synthesis in the glucosamine-induced IR-Hep G2 cells. These results provided a supplement for studying the antidiabetic activity of FCSsj.
Collapse
Affiliation(s)
- Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China
| | - Qin-Ying Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China.
| | - Wen-Yu Lu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China
| | - Jun Zeng
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China; Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, PR China.
| |
Collapse
|
12
|
Rabiah NI, Romaniuk JAH, Fuller GG, Scales CW, Cegelski L. Carbon compositional analysis of hydrogel contact lenses by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:47-52. [PMID: 31376631 DOI: 10.1016/j.ssnmr.2019.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Contact lenses are worn by over 140 million people each year and tremendous research and development efforts contribute to the identification and selection of hydrogel components and production protocols to yield lenses optimized for chemical and physiological properties, eye health and comfort. The final molecular composition and extent of incorporation of different components in contact lenses is routinely estimated after lens production through the analysis of the soluble components that were not included in the lens, i.e. remaining starting materials. Examination of composition in the actual intact materials is always valued and can reveal details that are missed by only examining the non-incorporated components, for example identifying chemical changes to components in lenses during the production process. Solid-state nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for the direct compositional analysis of insoluble and heterogeneous materials and is also uniquely suited to determining parameters of architecture in contact lenses. We utilized 13C cross-polarization magic angle spinning (CPMAS) NMR to examine and compare the carbon composition of soft contact lenses. 13C NMR spectra of individual polymer components enabled the determination of the approximate molecular carbon contributions of major lens components. Comparisons of the conventional etafilcon A hydrogel (1 Day Acuvue MOIST) lenses and silicone hydrogel lenses (Acuvue Oasys, Dailies Total 1, Clariti 1 Day, Biofinity, and Pure Vision) revealed major spectral differences, with considerable variation even among different silicone hydrogel lenses. The solid-state NMR approach provides a direct spectral reporting of carbon types in the hydrogel lens itself. This approach represents a valuable complementary analysis to benefit contact lens research and development and could be extended to isotopically labeled hydrogel lenses to map proximities and architecture between hydrogel components.
Collapse
Affiliation(s)
- Noelle I Rabiah
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Joseph A H Romaniuk
- Department of Chemistry, Stanford University, Stanford, CA, 94305, United States
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Charles W Scales
- Johnson & Johnson Vision Care, Inc. Jacksonville, FL, 32256, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
13
|
Jeffries J, Fuller GG, Cegelski L. Unraveling Escherichia coli's Cloak: Identification of Phosphoethanolamine Cellulose, Its Functions, and Applications. Microbiol Insights 2019; 12:1178636119865234. [PMID: 31431800 PMCID: PMC6685106 DOI: 10.1177/1178636119865234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial biofilms are complex, multicellular communities made up of bacteria enmeshed in a self-produced extracellular matrix (ECM) that protects against environmental stress. The ECM often comprises insoluble components, which complicates the study of biofilm composition, structure, and function. Wrinkled, agar-grown Escherichia coli biofilms require 2 insoluble macromolecules: curli amyloid fibers and cellulosic polymers. We quantified these components with solid-state nuclear magnetic resonance (NMR) and determined that curli contributed 85% of the isolated uropathogenic E coli ECM dry mass. The remaining 15% was cellulosic, but, surprisingly, was not ordinary cellulose. We tracked the identity of the unanticipated peak in the 13C NMR spectrum of the cellulosic component and discovered that E coli secrete phosphoethanolamine (pEtN)-modified cellulose. Cellulose is the most abundant biopolymer on the planet, and this marked the first identification of a naturally, chemically modified cellulose. To investigate potential roles of pEtN cellulose, we customized a newly designed live-cell monolayer rheometer and demonstrated that pEtN cellulose facilitated E coli attachment to bladder epithelial cells and acted as a glue, keeping curli cell associated. The discovery of pEtN cellulose opens questions regarding its biological function(s) and provides opportunities in materials science to explore this newly discovered biopolymer.
Collapse
Affiliation(s)
- Jamie Jeffries
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
14
|
Reichhardt C, Joubert LM, Clemons KV, Stevens DA, Cegelski L. Integration of electron microscopy and solid-state NMR analysis for new views and compositional parameters of Aspergillus fumigatus biofilms. Med Mycol 2019; 57:S239-S244. [PMID: 30816969 DOI: 10.1093/mmy/myy140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/25/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022] Open
Abstract
The general ability and tendency of bacteria and fungi to assemble into bacterial communities, termed biofilms, poses unique challenges to the treatment of human infections. Fungal biofilms, in particular, are associated with enhanced virulence in vivo and decreased sensitivity to antifungals. Much attention has been given to the complex cell wall structures in fungal organisms, yet beyond the cell surface, Aspergillus fumigatus and other fungi assemble a self-secreted extracellular matrix that is the hallmark of the biofilm lifestyle, protecting and changing the environment of resident members. Elucidation of the chemical and molecular detail of the extracellular matrix is crucial to understanding how its structure contributes to persistence and antifungal resistance in the host. We present a summary of integrated analyses of A. fumigatus biofilm architecture, including hyphae and the extracellular matrix, by scanning electron microscopy and A. fumigatus matrix composition by new top-down solid-state NMR approaches coupled with biochemical analysis. This combined methodology will be invaluable in formulating quantitative and chemical comparisons of A. fumigatus isolates that differ in virulence and are more or less resistant to antifungals. Ultimately, knowledge of the chemical and molecular requirements for matrix formation and function will drive the identification and development of new strategies to interfere with biofilm formation and virulence.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Lydia-Marie Joubert
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Karl V Clemons
- California Institute for Medical Research, San Jose, California USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - David A Stevens
- California Institute for Medical Research, San Jose, California USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California USA
| |
Collapse
|
15
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
16
|
Manfiolli AO, Dos Reis TF, de Assis LJ, de Castro PA, Silva LP, Hori JI, Walker LA, Munro CA, Rajendran R, Ramage G, Goldman GH. Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surf 2018; 1:43-56. [PMID: 32743127 PMCID: PMC7389341 DOI: 10.1016/j.tcsw.2018.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
The main characteristic of biofilm formation is extracellular matrix (ECM) production. The cells within the biofilm are surrounded by ECM which provides structural integrity and protection. During an infection, this protection is mainly against cells of the immune system and antifungal drugs. A. fumigatus forms biofilms during static growth on a solid substratum and in chronic aspergillosis infections. It is important to understand how, and which, A. fumigatus signal transduction pathways are important for the adhesion and biofilm formation in a host during infection. Here we investigated the role of MAP kinases and protein phosphatases in biofilm formation. The loss of the MAP kinases MpkA, MpkC and SakA had an impact on the cell surface and the ECM during biofilm formation and reduced the adherence of A. fumigatus to polystyrene and fibronectin-coated plates. The phosphatase null mutants ΔsitA and ΔptcB, involved in regulation of MpkA and SakA phosphorylation, influenced cell wall carbohydrate exposure. Moreover, we characterized the A. fumigatus protein phosphatase PphA. The ΔpphA strain was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and reduced chitin, decreased conidia phagocytosis by Dictyostelium discoideum and reduced adhesion and biofilm formation. Finally, ΔpphA strain was avirulent in a murine model of invasive pulmonary aspergillosis and increased the released of tumor necrosis factor alpha (TNF-α) from bone marrow derived macrophages (BMDMs). These results show that MAP kinases and phosphatases play an important role in signaling pathways that regulate the composition of the cell wall, extracellular matrix production as well as adhesion and biofilm formation in A. fumigatus.
Collapse
Affiliation(s)
- Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana I Hori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Louise A Walker
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Carol A Munro
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Bartlett C, Bansal S, Burnett A, Suits MD, Schaefer J, Cegelski L, Horsman GP, Weadge JT. Whole-Cell Detection of C-P Bonds in Bacteria. Biochemistry 2017; 56:5870-5873. [PMID: 29068202 DOI: 10.1021/acs.biochem.7b00814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Naturally produced molecules possessing a C-P bond, such as phosphonates and phosphinates, remain vastly underexplored. Although success stories like fosfomycin have reinvigorated small molecule phosphonate discovery efforts, bioinformatic analyses predict an enormous unexplored biological reservoir of C-P bond-containing molecules, including those attached to complex macromolecules. However, high polarity, a lack of chromophores, and complex macromolecular association impede phosphonate discovery and characterization. Here we detect widespread transcriptional activation of phosphonate biosynthetic machinery across diverse bacterial phyla and describe the use of solid-state nuclear magnetic resonance to detect C-P bonds in whole cells of representative Gram-negative and Gram-positive bacterial species. These results suggest that phosphonate tailoring is more prevalent than previously recognized and set the stage for elucidating the fascinating chemistry and biology of these modifications.
Collapse
Affiliation(s)
| | - Sonal Bansal
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | | | | | - Jacob Schaefer
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
18
|
Santos GRC, Porto ACO, Soares PAG, Vilanova E, Mourão PAS. Exploring the structure of fucosylated chondroitin sulfate through bottom-up nuclear magnetic resonance and electrospray ionization-high-resolution mass spectrometry approaches. Glycobiology 2017; 27:625-634. [DOI: 10.1093/glycob/cwx031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gustavo RC Santos
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis, and Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Ana CO Porto
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis, and Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Paulo AG Soares
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis, and Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Eduardo Vilanova
- Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis, and Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | | |
Collapse
|
19
|
Lin NJ. Biofilm over teeth and restorations: What do we need to know? Dent Mater 2017; 33:667-680. [PMID: 28372810 DOI: 10.1016/j.dental.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The goal of this manuscript is to provide an overview of biofilm attributes and measurement approaches in the context of studying biofilms on tooth and dental material surfaces to improve oral health. METHODS A historical perspective and terminology are presented, followed by a general description of the complexity of oral biofilms. Then, an approach to grouping measurable biofilm properties is presented and considered in relation to biofilm-material interactions and material design strategies to alter biofilms. Finally, the need for measurement assurance in biofilm and biofilm-materials research is discussed. RESULTS Biofilms are highly heterogeneous communities that are challenging to quantify. Their characteristics can be broadly categorized into constituents (identity), quantity, structure, and function. These attributes can be measured over time and in response to substrates and external stimuli. Selecting the biofilm attribute(s) of interest and appropriate measurement methods will depend on the application and, in the case of antimicrobial therapies, the strategic approach and expected mechanism of action. To provide measurement assurance, community accepted protocols and guidelines for minimum data and metadata should be established and broadly applied. Consensus standards may help to streamline testing and demonstration of product claims. SIGNIFICANCE Understanding oral biofilms and their interactions with tooth and dental material surfaces holds great promise for enabling improvements in oral and overall human health. Both substrate and biofilm properties should be considered to develop a more thorough understanding of the system.
Collapse
Affiliation(s)
- Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8543, USA.
| |
Collapse
|
20
|
Joubert LM, Ferreira JA, Stevens DA, Nazik H, Cegelski L. Visualization of Aspergillus fumigatus biofilms with Scanning Electron Microscopy and Variable Pressure-Scanning Electron Microscopy: A comparison of processing techniques. J Microbiol Methods 2016; 132:46-55. [PMID: 27836634 DOI: 10.1016/j.mimet.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/06/2016] [Accepted: 11/06/2016] [Indexed: 12/21/2022]
Abstract
Aspergillus fumigatus biofilms consist of a three-dimensional network of cellular hyphae and extracellular matrix. They are involved in infections of immune-compromised individuals, particularly those with cystic fibrosis. These structures are associated with persistence of infection, resistance to host immunity, and antimicrobial resistance. Thorough understanding of structure and function is imperative in the design of therapeutic drugs. Optimization of processing parameters, including aldehyde fixation, heavy metal contrasting, drying techniques and Ionic Liquid treatment, was undertaken for an ultrastructural approach to understand cellular and extracellular biofilm components. Conventional and Variable Pressure Scanning Electron Microscopy were applied to analyze the structure of biofilms attached to plastic and formed at an air-liquid interface.
Collapse
Affiliation(s)
- Lydia-Marie Joubert
- Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jose Ag Ferreira
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; California Institute for Medical Research, San Jose, CA, USA
| | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; California Institute for Medical Research, San Jose, CA, USA
| | - Hasan Nazik
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; California Institute for Medical Research, San Jose, CA, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Hoa Q. Do
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Collin G. Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Emily P. Hardy
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
22
|
Biofilms 2015: Multidisciplinary Approaches Shed Light into Microbial Life on Surfaces. J Bacteriol 2016; 198:2553-63. [PMID: 26977109 DOI: 10.1128/jb.00156-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 7th ASM Conference on Biofilms was held in Chicago, Illinois, from 24 to 29 October 2015. The conference provided an international forum for biofilm researchers across academic and industry platforms, and from different scientific disciplines, to present and discuss new findings and ideas. The meeting covered a wide range of topics, spanning environmental sciences, applied biology, evolution, ecology, physiology, and molecular biology of the biofilm lifestyle. This report summarizes the presentations with regard to emerging biofilm-related themes.
Collapse
|
23
|
Abstract
Biofilm infections are exceptionally recalcitrant to antimicrobial treatment or clearance by host immune responses. Within biofilms, microbes form adherent multicellular communities that are embedded in an extracellular matrix. Many prescribed antifungal drugs are not effective against biofilm infections owing to several protective factors including poor diffusion of drugs through biofilms as well as specific drug-matrix interactions. Despite the key roles that biofilms play in infections, there is little quantitative information about their composition and structural complexity because of the analytical challenge of studying these dense networks using traditional techniques. Within this review, recent work to elucidate fungal biofilm composition is discussed, with particular attention given to the challenges of annotation and quantification of matrix composition.
Collapse
|
24
|
Romaniuk JAH, Cegelski L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0024. [PMID: 26370936 DOI: 10.1098/rstb.2015.0024] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms.
Collapse
Affiliation(s)
- Joseph A H Romaniuk
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V. Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s41204-016-0001-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Mitchell KF, Zarnowski R, Andes DR. The Extracellular Matrix of Fungal Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:21-35. [PMID: 27271680 DOI: 10.1007/5584_2016_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.
Collapse
Affiliation(s)
- Kaitlin F Mitchell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 2015; 23:545-57. [PMID: 26077867 DOI: 10.1016/j.tim.2015.05.005] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/30/2022]
Abstract
Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits - which differ among various taxa - affect the enzymatic activity and product yield in vivo by modulating (i) the expression of the biosynthesis apparatus, (ii) the export of the nascent β-D-glucan polymer to the cell surface, and (iii) the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of resulting biofilms, which is particularly important for the interactions of bacteria with higher organisms - leading to rhizosphere colonization and modulating the virulence of cellulose-producing bacterial pathogens inside and outside of host cells. We review the organization of four principal types of cellulose synthase operon found in various bacterial genomes, identify additional bcs genes that encode components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms and in the choice between acute infection and persistence in the host.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|