1
|
Bussandri S, Shimon D, Equbal A, Ren Y, Takahashi S, Ramanathan C, Han S. P1 Center Electron Spin Clusters Are Prevalent in Type Ib Diamonds. J Am Chem Soc 2024; 146:5088-5099. [PMID: 38112330 DOI: 10.1021/jacs.3c06705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Understanding the spatial distribution of the P1 centers is crucial for diamond-based sensors and quantum devices. P1 centers serve as polarization sources for dynamic nuclear polarization (DNP) quantum sensing and play a significant role in the relaxation of nitrogen vacancy (NV) centers. Additionally, the distribution of NV centers correlates with the distribution of P1 centers, as NV centers are formed through the conversion of P1 centers. We utilized DNP and pulsed electron paramagnetic resonance (EPR) techniques that revealed strong clustering of a significant population of P1 centers that exhibit exchange coupling and produce asymmetric line shapes. The 13C DNP frequency profile at a high magnetic field revealed a pattern that requires an asymmetric EPR line shape of the P1 clusters with electron-electron (e-e) coupling strengths exceeding the 13C nuclear Larmor frequency. EPR and DNP characterization at high magnetic fields was necessary to resolve energy contributions from different e-e couplings. We employed a two-frequency pump-probe pulsed electron double resonance technique to show cross-talk between the isolated and clustered P1 centers. This finding implies that the clustered P1 centers affect all of the P1 populations. Direct observation of clustered P1 centers and their asymmetric line shape offers a novel and crucial insight into understanding magnetic noise sources for quantum information applications of diamonds and for designing diamond-based polarizing agents with optimized DNP efficiency for 13C and other nuclear spins of analytes. We propose that room temperature 13C DNP at a high field, achievable through straightforward modifications to existing solution-state NMR systems, is a potent tool for evaluating and controlling diamond defects.
Collapse
Affiliation(s)
- Santiago Bussandri
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Daphna Shimon
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem 9190401, Israel
| | - Asif Equbal
- Department of Chemistry, New York University, Abu Dhabi 129188, United Arab Emirates
- Center for Quantum and Topological Systems, New York University, Abu Dhabi 129188, United Arab Emirates
| | - Yuhang Ren
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Susumu Takahashi
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Chandrasekhar Ramanathan
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 600208, United States
| |
Collapse
|
2
|
Tagami K, Thicklin R, Jain S, Equbal A, Li M, Zens T, Siaw A, Han S. Design of a cryogen-free high field dual EPR and DNP probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107351. [PMID: 36599253 DOI: 10.1016/j.jmr.2022.107351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We present the design and construction of a cryogen free, dual electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) probe for novel dynamic nuclear polarization (DNP) experiments and concurrent "in situ" analysis of DNP mechanisms. We focus on the probe design that meets the balance between EPR, NMR, and low temperature performance, while maintaining a high degree of versatility: allowing multi-nuclear NMR detection as well as broadband DNP/EPR excitation/detection. To accomplish high NMR/EPR performance, we implement a novel inductively coupled double resonance NMR circuit (1H-13C) in a solid state probe operating at cryogenic temperatures. The components of the circuit were custom built to provide maximum NMR performance, and the physical layout of this circuit was numerically optimized via magnetic field simulations to allow maximum microwave transmission to the sample for optimal EPR performance. Furthermore this probe is based around a cryogen free gas exchange cryostat and has been designed to allow unlimited experiment times down to 8.5 Kelvin with minimal cost. The affordability of EPR/DNP experiment is an extremely important aspect for broader impact with magnetic resonance measurements. The purpose of this article is to provide as complete information as we have available for others with interest in building a dual DNP/EPR instrument based around a cryogen-free cryostat.
Collapse
Affiliation(s)
- Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raymond Thicklin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Miranda Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Toby Zens
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Anthony Siaw
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
3
|
Shimon D, Cantwell K, Joseph L, Ramanathan C. Room temperature DNP of diamond powder using frequency modulation. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101833. [PMID: 36209552 DOI: 10.1016/j.ssnmr.2022.101833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Dynamic nuclear polarization (DNP) is a method of enhancing NMR signals via the transfer of polarization from electron spins to nuclear spins using microwave (MW) irradiation. In most cases, monochromatic continuous-wave (MCW) MW irradiation is used. Recently, several groups have shown that frequency modulation of the MW irradiation can result in an additional increase in DNP enhancement above that obtained with MCW. The effect of frequency modulation on the solid effect (SE) and the cross effect (CE) has previously been studied using the stable organic radical 4-hydroxy TEMPO (TEMPOL) at temperatures under 20 K. Here, in addition to the SE and CE, we discuss the effect of frequency modulation on the Overhauser effect (OE) and the truncated CE (tCE) in the room-temperature 13C-DNP of diamond powders. We recently showed that diamond powders can exhibit multiple DNP mechanisms simultaneously due to the heterogeneity of P1 (substitutional nitrogen) environments within diamond crystallites. We explore how the two parameters that define the frequency modulation: (i) the Modulation frequency, fm (how fast the microwave frequency is varied) and (ii) the Modulation amplitude, Δω (the magnitude of the change in microwave frequency) influence the enhancement obtained via each mechanism. Frequency modulation during DNP not only allows us to improve DNP enhancement, but also gives us a way to control which DNP mechanism is most active. By choosing the appropriate modulation parameters, we can selectively enhance some mechanisms while simultaneously suppressing others.
Collapse
Affiliation(s)
- Daphna Shimon
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 9190401, Israel.
| | - Kelly Cantwell
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA
| | - Linta Joseph
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA
| | | |
Collapse
|
4
|
Shimon D, Cantwell KA, Joseph L, Williams EQ, Peng Z, Takahashi S, Ramanathan C. Large Room Temperature Bulk DNP of 13C via P1 Centers in Diamond. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17777-17787. [PMID: 36304670 PMCID: PMC9589901 DOI: 10.1021/acs.jpcc.2c06145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
We use microwave-induced dynamic nuclear polarization (DNP) of the substitutional nitrogen defects (P1 centers) in diamond to hyperpolarize bulk 13C nuclei in both single crystal and powder samples at room temperature at 3.34 T. The large (>100-fold) enhancements demonstrated correspond to a greater than 10 000-fold improvement in terms of signal averaging of the 1% abundant 13C spins. The DNP was performed using low-power solid state sources under static (nonspinning) conditions. The DNP spectrum (DNP enhancement as a function of microwave frequency) of diamond powder shows features that broadly correlate with the EPR spectrum. A well-defined negative Overhauser peak and two solid effect peaks are observed for the central (m I = 0) manifold of the 14N spins. Previous low temperature measurements in diamond had measured a positive Overhauser enhancement in this manifold. Frequency-chirped millimeter-wave excitation of the electron spins is seen to significantly improve the enhancements for the two outer nuclear spin manifolds (mI = ±1) and to blur some of the sharper features associated with the central manifold. The outer lines are best fit using a combination of the cross effect and the truncated cross effect, which is known to mimic features of an Overhauser effect. Similar features are also observed in experiments on single crystal samples. The observation of all of these mechanisms in a single material system under the same experimental conditions is likely due to the significant heterogeneity of the high pressure, high temperature (HPHT) type Ib diamond samples used. Large room temperature DNP enhancements at fields above a few tesla enable spectroscopic studies with better chemical shift resolution under ambient conditions.
Collapse
Affiliation(s)
- Daphna Shimon
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem9190401, Israel
| | - Kelly A. Cantwell
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire03755, United States
| | - Linta Joseph
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire03755, United States
| | - Ethan Q. Williams
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire03755, United States
| | - Zaili Peng
- Department
of Chemistry, University of Southern California, Los Angeles, California90089, United States
| | - Susumu Takahashi
- Department
of Chemistry, University of Southern California, Los Angeles, California90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California90089, United States
| | - Chandrasekhar Ramanathan
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire03755, United States
| |
Collapse
|
5
|
Shimon D, van Schooten KJ, Paul S, Peng Z, Takahashi S, Köckenberger W, Ramanathan C. DNP-NMR of surface hydrogen on silicon microparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:68-75. [PMID: 31128358 DOI: 10.1016/j.ssnmr.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) offers a promising route to studying local atomic environments at the surface of both crystalline and amorphous materials. We take advantage of unpaired electrons due to defects close to the surface of the silicon microparticles to hyperpolarize adjacent 1H nuclei. At 3.3 T and 4.2 K, we observe the presence of two proton peaks, each with a linewidth on the order of 5 kHz. Echo experiments indicate a homogeneous linewidth of ∼150-300 Hz for both peaks, indicative of a sparse distribution of protons in both environments. The high frequency peak at 10 ppm lies within the typical chemical shift range for proton NMR, and was found to be relatively stable over repeated measurements. The low frequency peak was found to vary in position between -19 and -37 ppm, well outside the range of typical proton NMR shifts, and indicative of a high-degree of chemical shielding. The low frequency peak was also found to vary significantly in intensity across different experimental runs, suggesting a weakly-bound species. These results suggest that the hydrogen is located in two distinct microscopic environments on the surface of these Si particles.
Collapse
Affiliation(s)
- Daphna Shimon
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA.
| | - Kipp J van Schooten
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA
| | - Subhradip Paul
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Zaili Peng
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Susumu Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA; Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Walter Köckenberger
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
6
|
Enhanced dynamic nuclear polarization via swept microwave frequency combs. Proc Natl Acad Sci U S A 2018; 115:10576-10581. [PMID: 30279178 DOI: 10.1073/pnas.1807125115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic nuclear polarization (DNP) has enabled enormous gains in magnetic resonance signals and led to vastly accelerated NMR/MRI imaging and spectroscopy. Unlike conventional cw-techniques, DNP methods that exploit the full electron spectrum are appealing since they allow direct participation of all electrons in the hyperpolarization process. Such methods typically entail sweeps of microwave radiation over the broad electron linewidth to excite DNP but are often inefficient because the sweeps, constrained by adiabaticity requirements, are slow. In this paper, we develop a technique to overcome the DNP bottlenecks set by the slow sweeps, using a swept microwave frequency comb that increases the effective number of polarization transfer events while respecting adiabaticity constraints. This allows a multiplicative gain in DNP enhancement, scaling with the number of comb frequencies and limited only by the hyperfine-mediated electron linewidth. We demonstrate the technique for the optical hyperpolarization of 13C nuclei in powdered microdiamonds at low fields, increasing the DNP enhancement from 30 to 100 measured with respect to the thermal signal at 7T. For low concentrations of broad linewidth electron radicals [e.g., TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl)], these multiplicative gains could exceed an order of magnitude.
Collapse
|
7
|
Can TV, McKay JE, Weber RT, Yang C, Dubroca T, van Tol J, Hill S, Griffin RG. Frequency-Swept Integrated and Stretched Solid Effect Dynamic Nuclear Polarization. J Phys Chem Lett 2018; 9:3187-3192. [PMID: 29756781 PMCID: PMC8253171 DOI: 10.1021/acs.jpclett.8b01002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We investigate a new time domain approach to dynamic nuclear polarization (DNP), the frequency-swept integrated solid effect (FS-ISE), utilizing a high power, broadband 94 GHz (3.35 T) pulse EPR spectrometer. The bandwidth of the spectrometer enabled measurement of the DNP Zeeman frequency/field profile that revealed two dominant polarization mechanisms, the expected ISE, and a recently observed mechanism, the stretched solid effect (S2E). At 94 GHz, despite the limitations in the microwave chirp pulse length (10 μs) and the repetition rate (2 kHz), we obtained signal enhancements up to ∼70 for the S2E and ∼50 for the ISE. The results successfully demonstrate the viability of the FS-ISE and S2E DNP at a frequency 10 times higher than previous studies. Our results also suggest that these approaches are candidates for implementation at higher magnetic fields.
Collapse
Affiliation(s)
- T. V. Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - J. E. McKay
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - R. T. Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - C. Yang
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - T. Dubroca
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - J. van Tol
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - S. Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32310, United States
| | - R. G. Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Can TV, Weber RT, Walish JJ, Swager TM, Griffin RG. Ramped-amplitude NOVEL. J Chem Phys 2017; 146:154204. [PMID: 28433011 PMCID: PMC5400743 DOI: 10.1063/1.4980155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/03/2017] [Indexed: 11/14/2022] Open
Abstract
We present a pulsed dynamic nuclear polarization (DNP) study using a ramped-amplitude nuclear orientation via electron spin locking (RA-NOVEL) sequence that utilizes a fast arbitrary waveform generator (AWG) to modulate the microwave pulses together with samples doped with narrow-line radicals such as 1,3-bisdiphenylene-2-phenylallyl (BDPA), sulfonated-BDPA (SA-BDPA), and trityl-OX063. Similar to ramped-amplitude cross polarization in solid-state nuclear magnetic resonance, RA-NOVEL improves the DNP efficiency by a factor of up to 1.6 compared to constant-amplitude NOVEL (CA-NOVEL) but requires a longer mixing time. For example, at τmix = 8 μs, the DNP efficiency reaches a plateau at a ramp amplitude of ∼20 MHz for both SA-BDPA and trityl-OX063, regardless of the ramp profile (linear vs. tangent). At shorter mixing times (τmix = 0.8 μs), we found that the tangent ramp is superior to its linear counterpart and in both cases there exists an optimum ramp size and therefore ramp rate. Our results suggest that RA-NOVEL should be used instead of CA-NOVEL as long as the electronic spin lattice relaxation T1e is sufficiently long and/or the duty cycle of the microwave amplifier is not exceeded. To the best of our knowledge, this is the first example of a time domain DNP experiment that utilizes modulated microwave pulses. Our results also suggest that a precise modulation of the microwave pulses can play an important role in optimizing the efficiency of pulsed DNP experiments and an AWG is an elegant instrumental solution for this purpose.
Collapse
Affiliation(s)
- T V Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R T Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, USA
| | - J J Walish
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R G Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|