1
|
Schneider JE, Zeng S, Anferov SW, Filatov AS, Anderson JS. Isolation and Crystallographic Characterization of an Octavalent Co 2O 2 Diamond Core. J Am Chem Soc 2024; 146:23998-24008. [PMID: 39146525 DOI: 10.1021/jacs.4c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
High-valent cobalt oxides play a pivotal role in alternative energy technology as catalysts for water splitting and as cathodes in lithium-ion batteries. Despite this importance, the properties governing the stability of high-valent cobalt oxides and specifically possible oxygen evolution pathways are not clear. One root of this limited understanding is the scarcity of high-valent Co(IV)-containing model complexes; there are no reports of stable, well-defined complexes with multiple Co(IV) centers. Here, an oxidatively robust fluorinated ligand scaffold enables the isolation and crystallographic characterization of a Co(IV)2-bis-μ-oxo complex. This complex is remarkably stable, in stark contrast with previously reported Co(IV)2 species that are highly reactive, which demonstrates that oxy-Co(IV)2 species are not necessarily unstable with respect to oxygen evolution. This example underscores a new design strategy for highly oxidizing transition-metal fragments and provides detailed data on a previously inaccessible chemical unit of relevance to O-O bond formation and oxygen evolution.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shilin Zeng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Heidinger L, Perez K, Spatzal T, Einsle O, Weber S, Rees DC, Schleicher E. Analysis of early intermediate states of the nitrogenase reaction by regularization of EPR spectra. Nat Commun 2024; 15:4041. [PMID: 38740794 DOI: 10.1038/s41467-024-48271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.
Collapse
Affiliation(s)
- Lorenz Heidinger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Kathryn Perez
- Howard Hughes Medical Institute (HHMI), California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA, USA
| | - Thomas Spatzal
- Howard Hughes Medical Institute (HHMI), California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA, USA
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Douglas C Rees
- Howard Hughes Medical Institute (HHMI), California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA, USA.
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Lasorsa A, Merzougui H, Cantrelle FX, Sicoli G, Dupré E, Hanoulle X, Belle V, Smet-Nocca C, Landrieu I. Magnetic resonance investigation of conformational responses of tau protein to specific phosphorylation. Biophys Chem 2024; 305:107155. [PMID: 38100856 DOI: 10.1016/j.bpc.2023.107155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Intrinsically disordered proteins (IDPs) are known to adopt many rapidly interconverting structures, making it difficult to pinpoint the specific conformational states that are relevant for their function. Tau is an important IDP, and its conformation is known to be affected by post-translational modifications (PTMs), such as phosphorylation. To investigate the effect of specific phosphorylation on full-length Tau's dynamic global conformation, we employed a combination of nuclear magnetic resonance-based paramagnetic relaxation interference methods and electron paramagnetic resonance spectroscopy. By reproducing the AT8 epitope, comprising exclusive phosphorylation at residues S202 and T205, we were able to identify conformations specific to phosphorylated Tau, which exhibited a tendency towards less compact states. These mechanistic details are of significance to understand the path leading from soluble Tau to the ordered structure of Tau fibers. This approach proved to be successful for studying the conformational changes of (phosphorylated) full-length Tau and can potentially be extended to the study of other IDPs that undergo various PTMs.
Collapse
Affiliation(s)
- Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.; CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Hamida Merzougui
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - François-Xavier Cantrelle
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Giuseppe Sicoli
- Univ. Lille, CNRS UMR 8516 - LASIRE - Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Elian Dupré
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Xavier Hanoulle
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS, BIP - Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Caroline Smet-Nocca
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France.
| |
Collapse
|
4
|
Kowarschik S, Schöllkopf J, Müller T, Tian S, Knerr J, Bakker H, Rein S, Dong M, Weber S, Grosse R, Schmidt G. Yersinia pseudotuberculosis cytotoxic necrotizing factor interacts with glycosaminoglycans. FASEB J 2021; 35:e21647. [PMID: 34165206 DOI: 10.1096/fj.202001630r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
The Cytotoxic Necrotizing Factor Y (CNFY) is produced by the gram-negative, enteric pathogen Yersinia pseudotuberculosis. The bacterial toxin belongs to a family of deamidases, which constitutively activate Rho GTPases, thereby balancing inflammatory processes. We identified heparan sulfate proteoglycans as essential host cell factors for intoxication with CNFY. Using flow cytometry, microscopy, knockout cell lines, pulsed electron-electron double resonance, and bio-layer interferometry, we studied the role of glucosaminoglycans in the intoxication process of CNFY. Especially the C-terminal part of CNFY, which encompasses the catalytic activity, binds with high affinity to heparan sulfates. CNFY binding with the N-terminal domain to a hypothetical protein receptor may support the interaction between the C-terminal domain and heparan sulfates, which seems sterically hindered in the full toxin. A second conformational change occurs by acidification of the endosome, probably allowing insertion of the hydrophobic regions of the toxin into the endosomal membrane. Our findings suggest that heparan sulfates play a major role for intoxication within the endosome, rather than being relevant for an interaction at the cell surface.
Collapse
Affiliation(s)
- Stefanie Kowarschik
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Schöllkopf
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Müller
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Songhai Tian
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julian Knerr
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Bakker
- Hannover Medical School, Institute for Clinical Biochemistry, Hannover, Germany
| | - Stephan Rein
- Institute for Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Stefan Weber
- Institute for Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Robert Grosse
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Matveeva AG, Syryamina VN, Nekrasov VM, Bowman MK. Non-uniform sampling in pulse dipolar spectroscopy by EPR: the redistribution of noise and the optimization of data acquisition. Phys Chem Chem Phys 2021; 23:10335-10346. [PMID: 33881433 DOI: 10.1039/d1cp00705j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulse dipolar spectroscopy (PDS) in Electron Paramagnetic Resonance (EPR) is the method of choice for determining the distance distribution function for mono-, bi- or multi- spin-labeled macromolecules and nanostructures. PDS acquisition schemes conventionally use uniform sampling of the dipolar trace, but non-uniform sampling (NUS) schemes can decrease the total measurement time or increase the accuracy of the resulting distance distributions. NUS requires optimization of the data acquisition scheme, as well as changes in data processing algorithms to accommodate the non-uniformly sampled data. We investigate in silico the applicability of the NUS approach in PDS, considering its effect on random, truncation and sampling noise in the experimental data. Each type of noise in the time-domain data propagates differently and non-uniformly into the distance spectrum as errors in the distance distribution. NUS schemes seem to be a valid approach for increasing sensitivity and/or throughput in PDS by decreasing and redistributing noise in the distance spectrum so that it has less impact on the distance spectrum.
Collapse
Affiliation(s)
- Anna G Matveeva
- Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vyacheslav M Nekrasov
- Novosibirsk State University, 630090 Novosibirsk, Russia and Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Michael K Bowman
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
6
|
Fábregas Ibáñez L, Jeschke G, Stoll S. DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:209-224. [PMID: 34568875 PMCID: PMC8462493 DOI: 10.5194/mr-1-209-2020] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 05/09/2023]
Abstract
Dipolar EPR spectroscopy (DEER and other techniques) enables the structural characterization of macromolecular and biological systems by measurement of distance distributions between unpaired electrons on a nanometer scale. The inference of these distributions from the measured signals is challenging due to the ill-posed nature of the inverse problem. Existing analysis tools are scattered over several applications with specialized graphical user interfaces. This renders comparison, reproducibility, and method development difficult. To remedy this situation, we present DeerLab, an open-source software package for analyzing dipolar EPR data that is modular and implements a wide range of methods. We show that DeerLab can perform one-step analysis based on separable non-linear least squares, fit dipolar multi-pathway models to multi-pulse DEER data, run global analysis with non-parametric distributions, and use a bootstrapping approach to fully quantify the uncertainty in the analysis.
Collapse
Affiliation(s)
- Luis Fábregas Ibáñez
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Burger M, Rein S, Weber S, Gräber P, Kacprzak S. Distance measurements in the F 0F 1-ATP synthase from E. coli using smFRET and PELDOR spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 49:1-10. [PMID: 31705179 DOI: 10.1007/s00249-019-01408-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/09/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Fluorescence resonance energy transfer in single enzyme molecules (smFRET, single-molecule measurement) allows the measurement of multicomponent distance distributions in complex biomolecules similar to pulsed electron-electron double resonance (PELDOR, ensemble measurement). Both methods use reporter groups: FRET exploits the distance dependence of the electric interaction between electronic transition dipole moments of the attached fluorophores, whereas PELDOR spectroscopy uses the distance dependence of the interaction between the magnetic dipole moments of attached spin labels. Such labels can be incorporated easily to cysteine residues in the protein. Comparison of distance distributions obtained with both methods was carried out with the H+-ATPase from Escherichia coli (EF0F1). The crystal structure of this enzyme is known. It contains endogenous cysteines, and as an internal reference two additional cysteines were introduced (EF0F1-γT106C-εH56C). These positions were chosen to allow application of both methods under optimal conditions. Both methods yield very similar multicomponent distance distributions. The dominating distance distribution (> 50%) is due to the two cysteines introduced by site-directed mutagenesis and the distance is in agreement with the crystal structure. Two additional distance distributions are detected with smFRET and with PELDOR. These can be assigned by comparison with the structure to labels at endogenous cysteines. One additional distribution is detected only with PELDOR. The comparison indicates that under optimal conditions smFRET and PELDOR result in the same distance distributions. PELDOR has the advantage that different distributions can be obtained with ensemble measurements, whereas FRET requires single-molecule techniques.
Collapse
Affiliation(s)
- Markus Burger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Stephan Rein
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Peter Gräber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany.
| | - Sylwia Kacprzak
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| |
Collapse
|
8
|
Jeschke G. Quo vadis EPR? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:36-41. [PMID: 31345773 DOI: 10.1016/j.jmr.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/21/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Complexity of paramagnetic catalysts and materials increases, and the same applies to systems targeted by integrative structural biology. Hence, EPR spectroscopists must find ways to enhance information content of their data. I argue that a third major wave of method development in EPR spectroscopy, which is triggered by recent advances in digital electronics and computing, can achieve this. Transfer of NMR methods to EPR will go on, but part of the new EPR methodology will depend on completely new concepts.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zurich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
9
|
Lai Y, Kuo Y, Chiang Y. Identifying Protein Conformational Dynamics Using Spin‐label ESR. Chem Asian J 2019; 14:3981-3991. [DOI: 10.1002/asia.201900855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yei‐Chen Lai
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
- Department of Chemistry&Biochemistry University of California Santa Barbara CA 93106-9510 USA
| | - Yun‐Hsuan Kuo
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yun‐Wei Chiang
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
10
|
Milikisiyants S, Voinov MA, Marek A, Jafarabadi M, Liu J, Han R, Wang S, Smirnov AI. Enhancing sensitivity of Double Electron-Electron Resonance (DEER) by using Relaxation-Optimized Acquisition Length Distribution (RELOAD) scheme. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:115-126. [PMID: 30544015 PMCID: PMC6894391 DOI: 10.1016/j.jmr.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 05/05/2023]
Abstract
Over the past decades pulsed electron-electron double resonance (PELDOR), often called double electron-electron resonance (DEER), became one of the major spectroscopic tools for measurements of nanometer-scale distances and distance distributions in non-crystalline biological and chemical systems. The method is based on detecting the amplitude of the primary (3-pulse DEER) or refocused (4-pulse DEER) spin echo for the so-called "observer" spins when the other spins coupled to the former by a dipolar interaction are flipped by a "pump" pulse at another EPR frequency. While the timing of the pump pulse is varied in steps, the positions of the observer pulses are typically fixed. For such a detection scheme the total length of the observer pulse train and the electron spin memory time determine the amplitude of the detected echo signal. Usually, the distance range considerations in DEER experiments dictate the total length of the observer pulse train to exceed the phase memory time by a factor of few and this leads to a dramatic loss of the signal-to-noise ratio (SNR). While the acquisition of the DEER signal seems to be irrational under such conditions, it is currently the preferred way to conduct DEER because of an effective filtering out of all other unwanted interactions. Here we propose a novel albeit simple approach to improve DEER sensitivity and decrease data acquisition time by introducing the signal acquisition scheme based on RELaxation Optimized Acquisition (Length) Distribution (DEER-RELOAD). In DEER-RELOAD the dipolar phase evolution signal is acquired in multiple segments in which the observer pulses are fixed at the positions to optimize SNR just for that specific segment. The length of the segment is chosen to maximize the signal acquisition efficiency according the phase relaxation properties of the spin system. The total DEER trace is then obtained by "stitching" the multiple segments into a one continuous trace. The utility of the DEER-RELOAD acquisition scheme has been demonstrated on an example of the standard 4-pulse DEER sequence applied to two membrane protein complexes labeled with nitroxides. While theoretical gains from the DEER-RELOAD scheme increase with the number of stitched segments, in practice, even dividing the acquisition of the DEER trace into two segments may improve SNR by a factor of >3, as it has been demonstrated for one of these two membrane proteins.
Collapse
Affiliation(s)
- Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Maxim A Voinov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Antonin Marek
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Morteza Jafarabadi
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Jing Liu
- Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China
| | - Rong Han
- Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China
| | - Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China
| | - Alex I Smirnov
- Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China.
| |
Collapse
|
11
|
Li CC, Hung CL, Yeh PS, Li CE, Chiang YW. Doubly spin-labeled nanodiscs to improve structural determination of membrane proteins by ESR. RSC Adv 2019; 9:9014-9021. [PMID: 35517660 PMCID: PMC9062051 DOI: 10.1039/c9ra00896a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 11/30/2022] Open
Abstract
Pulsed dipolar spectroscopy (PDS) is a powerful tool to explore conformational changes of membrane proteins (MPs). However, the MPs suffer from relatively weak dipolar signals due to their complex nature in membrane environments, which consequently reduces the interspin distance resolution obtainable by PDS. Here we report the use of nanodiscs (NDs) to improve the distance resolution. Two genetically engineered membrane scaffold protein mutants are introduced, each of which is shown to form double-labeled ND efficiently and with high homogeneity. The resultant interspin distance distribution is featured by a small distribution width, suggesting high resolution. When PDS is performed on a binary mixture of the double-labeled ND devoid of MPs and the un-labeled ND with incorporated double-labeled MPs, the overall amplitude of dipolar signals is increased, leading to a critical enhancement of the distance resolution. A theoretical foundation is provided to validate the analysis. With this approach, the determination of MP structures can be studied at high resolution in NDs. Spin-labeled nanodiscs improve DEER distance measurement of membrane proteins.![]()
Collapse
Affiliation(s)
- Chieh-Chin Li
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Chien-Lun Hung
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Pei-Shan Yeh
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Chi-En Li
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|