1
|
Ge F, Chen G, Qian M, Xu C, Liu J, Cao J, Li X, Hu D, Xu Y, Xin Y, Wang D, Zhou J, Shi H, Tan Z. Artificial Intelligence Aided Lipase Production and Engineering for Enzymatic Performance Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14911-14930. [PMID: 37800676 DOI: 10.1021/acs.jafc.3c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
With the development of artificial intelligence (AI), tailoring methods for enzyme engineering have been widely expanded. Additional protocols based on optimized network models have been used to predict and optimize lipase production as well as properties, namely, catalytic activity, stability, and substrate specificity. Here, different network models and algorithms for the prediction and reforming of lipase, focusing on its modification methods and cases based on AI, are reviewed in terms of both their advantages and disadvantages. Different neural networks coupled with various algorithms are usually applied to predict the maximum yield of lipase by optimizing the external cultivations for lipase production, while one part is used to predict the molecule variations affecting the properties of lipase. However, few studies have directly utilized AI to engineer lipase by affecting the structure of the enzyme, and a set of research gaps needs to be explored. Additionally, future perspectives of AI application in enzymes, including lipase engineering, are deduced to help the redesign of enzymes and the reform of new functional biocatalysts. This review provides a new horizon for developing effective and innovative AI tools for lipase production and engineering and facilitating lipase applications in the food industry and biomass conversion.
Collapse
Affiliation(s)
- Feiyin Ge
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Gang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Minjing Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Cheng Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jiao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jiaqi Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Xinchao Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Die Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yangsen Xu
- Dongtai Hanfangyuan Biotechnology Co. Ltd., Yancheng 224241, People's Republic of China
| | - Ya Xin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jia Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| |
Collapse
|
2
|
Hoch JC, Baskaran K, Burr H, Chin J, Eghbalnia H, Fujiwara T, Gryk M, Iwata T, Kojima C, Kurisu G, Maziuk D, Miyanoiri Y, Wedell J, Wilburn C, Yao H, Yokochi M. Biological Magnetic Resonance Data Bank. Nucleic Acids Res 2023; 51:D368-D376. [PMID: 36478084 PMCID: PMC9825541 DOI: 10.1093/nar/gkac1050] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
The Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics. Advances including GHz-class NMR instruments, national and trans-national NMR cyberinfrastructure, hybrid structural biology methods and machine learning are driving increases in the amount, type, and applications of NMR data in the biosciences. BMRB is a Core Archive and member of the World-wide Protein Data Bank (wwPDB).
Collapse
Affiliation(s)
- Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Kumaran Baskaran
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Harrison Burr
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - John Chin
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Hamid R Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Toshimichi Fujiwara
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Michael R Gryk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Takeshi Iwata
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Chojiro Kojima
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Dmitri Maziuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Yohei Miyanoiri
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Jonathan R Wedell
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Colin Wilburn
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Hongyang Yao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| |
Collapse
|
3
|
Gill ML. The rise of the machines in chemistry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:1044-1051. [PMID: 35976263 DOI: 10.1002/mrc.5304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The use of artificial intelligence and, more specifically, deep learning methods in chemistry is becoming increasingly common. Applications in informatics fields, such as cheminformatics and proteomics, structural biology, and spectroscopy, including NMR, are on the rise. Recent developments in model architectures, such as graph convolutional neural networks and transformers, have been enabled by advancements in computational hardware and software. However, model architectures with more predictive power often require larger amounts of training data, which can be challenging to acquire, but this requirement can be mitigated through techniques like pretraining and fine-tuning. In spite of these successes, challenges remain, such as normalization and scaling of data, availability of experimentally acquired data, and model explainability.
Collapse
|
4
|
Simultaneous Prediction, Determination, and Extraction of Four Polycyclic Aromatic Hydrocarbons in the Environment Using a UCON-NaH 2PO 4 Aqueous Two-Phase Extraction System Combined with High-Performance Liquid Chromatography-Ultraviolet Detection. Molecules 2022; 27:molecules27196465. [PMID: 36235001 PMCID: PMC9571717 DOI: 10.3390/molecules27196465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper, a new aqueous two-phase extraction system(ATPES) consisting of UCON (poly(ethylene glycol-ran-propylene glycol) monobutyl ether)-NaH2PO4 was established, and four trace polycyclic aromatic hydrocarbons (PAHs: fluorene, anthracene, pyrene and phenanthrene) in water and soil were analyzed by high-performance liquid chromatography (HPLC)-ultraviolet detection. In the multi-factor experiment, the central composite design (CCD) was used to determine the optimum technological conditions. The final optimal conditions were as follows: the concentration of UCON was 0.45 g·mL-1, the concentration of NaH2PO4 was 3.5 mol·L-1, and the temperature was 30 °C. The recovery of the four targets was 98.91-99.84% with a relative standard deviation of 0.3-2.1%. Then UCON recycling and cyclic tests were designed in the experiment, and the results showed that the recovery of PAHs gradually increased in the three extractions because of the remaining PAHs in the salt phase of last extraction. The recovery of PAHs in the UCON recycling test was less than that in the extraction test due to the wastage of UCON. In addition, a two-phase aqueous extraction model was established based on the random forest (RF) model. The results obtained were compared with the experimental data, and the root mean square error (RMSE) was 0.0371-0.0514 and the correlation coefficient R2 was 96.20-98.53%, proving that the model is robust and reliable.
Collapse
|
5
|
Fraga KJ, Huang YJ, Ramelot TA, Swapna GVT, Lashawn Anak Kendary A, Li E, Korf I, Montelione GT. SpecDB: A relational database for archiving biomolecular NMR spectral data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107268. [PMID: 35930941 PMCID: PMC9922030 DOI: 10.1016/j.jmr.2022.107268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 05/11/2023]
Abstract
NMR is a valuable experimental tool in the structural biologist's toolkit to elucidate the structures, functions, and motions of biomolecules. The progress of machine learning, particularly in structural biology, reveals the critical importance of large, diverse, and reliable datasets in developing new methods and understanding in structural biology and science more broadly. Biomolecular NMR research groups produce large amounts of data, and there is renewed interest in organizing these data to train new, sophisticated machine learning architectures and to improve biomolecular NMR analysis pipelines. The foundational data type in NMR is the free-induction decay (FID). There are opportunities to build sophisticated machine learning methods to tackle long-standing problems in NMR data processing, resonance assignment, dynamics analysis, and structure determination using NMR FIDs. Our goal in this study is to provide a lightweight, broadly available tool for archiving FID data as it is generated at the spectrometer, and grow a new resource of FID data and associated metadata. This study presents a relational schema for storing and organizing the metadata items that describe an NMR sample and FID data, which we call Spectral Database (SpecDB). SpecDB is implemented in SQLite and includes a Python software library providing a command-line application to create, organize, query, backup, share, and maintain the database. This set of software tools and database schema allow users to store, organize, share, and learn from NMR time domain data. SpecDB is freely available under an open source license at https://github.rpi.edu/RPIBioinformatics/SpecDB.
Collapse
Affiliation(s)
- Keith J Fraga
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | - Yuanpeng J Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| | - G V T Swapna
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | - Ethan Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| | - Ian Korf
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| |
Collapse
|
6
|
Baskaran K, Wilburn C, Wedell J, Koharudin L, Ulrich E, Schuyler A, Eghbalnia H, Gronenborn A, Hoch J. Anomalous amide proton chemical shifts as signatures of hydrogen bonding to aromatic sidechains. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:765-775. [PMID: 37905229 PMCID: PMC10539802 DOI: 10.5194/mr-2-765-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/02/2023]
Abstract
Hydrogen bonding between an amide group and the p-π cloud of an aromatic ring was first identified in a protein in the 1980s. Subsequent surveys of high-resolution X-ray crystal structures found multiple instances, but their preponderance was determined to be infrequent. Hydrogen atoms participating in a hydrogen bond to the p-π cloud of an aromatic ring are expected to experience an upfield chemical shift arising from a shielding ring current shift. We surveyed the Biological Magnetic Resonance Data Bank for amide hydrogens exhibiting unusual shifts as well as corroborating nuclear Overhauser effects between the amide protons and ring protons. We found evidence that Trp residues are more likely to be involved in p-π hydrogen bonds than other aromatic amino acids, whereas His residues are more likely to be involved in in-plane hydrogen bonds, with a ring nitrogen acting as the hydrogen acceptor. The p-π hydrogen bonds may be more abundant than previously believed. The inclusion in NMR structure refinement protocols of shift effects in amide protons from aromatic sidechains, or explicit hydrogen bond restraints between amides and aromatic rings, could improve the local accuracy of sidechain orientations in solution NMR protein structures, but their impact on global accuracy is likely be limited.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Colin W. Wilburn
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Jonathan R. Wedell
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Leonardus M. I. Koharudin
- Department of Structural Biology University of Pittsburgh School of
Medicine 3501 Fifth Ave., Pittsburgh, PA 15260 USA
| | - Eldon L. Ulrich
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Adam D. Schuyler
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Angela M. Gronenborn
- Department of Structural Biology University of Pittsburgh School of
Medicine 3501 Fifth Ave., Pittsburgh, PA 15260 USA
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| |
Collapse
|
7
|
Cobas C. NMR signal processing, prediction, and structure verification with machine learning techniques. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:512-519. [PMID: 31912547 DOI: 10.1002/mrc.4989] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 05/25/2023]
Abstract
Machine learning (ML) methods have been present in the field of NMR since decades, but it has experienced a tremendous growth in the last few years, especially thanks to the emergence of deep learning (DL) techniques taking advantage of the increased amounts of data and available computer power. These algorithms are successfully employed for classification, regression, clustering, or dimensionality reduction tasks of large data sets and have been intensively applied in different areas of NMR including metabonomics, clinical diagnosis, or relaxometry. In this article, we concentrate on the various applications of ML/DL in the areas of NMR signal processing and analysis of small molecules, including automatic structure verification and prediction of NMR observables in solution.
Collapse
Affiliation(s)
- Carlos Cobas
- Mestrelab Research, Santiago de Compostela, Spain
| |
Collapse
|