Concentration gradients in evaporating binary droplets probed by spatially resolved Raman and NMR spectroscopy.
Proc Natl Acad Sci U S A 2022;
119:e2111989119. [PMID:
35377781 PMCID:
PMC9169657 DOI:
10.1073/pnas.2111989119]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Imagine you spill your drink and miss some spots when cleaning up. The next morning you notice that the stains look quite different on different surfaces. What has happened? In droplets of liquid mixtures, the components evaporate at different rates, which leads to gradients in concentration and surface tension. These gradients can cause, for example, so-called Marangoni flows, which in turn affect the evaporation process. To better understand evaporation-induced liquid flows, the concentration gradients have to be measured without disturbing the liquid. Marker molecules might be surface-active or even may affect the evaporation process. We report here on marker-free and contactless measurements of concentrations by spatially resolved Raman and NMR spectroscopy in evaporating binary droplets.
Understanding the evaporation process of binary sessile droplets is essential for optimizing various technical processes, such as inkjet printing or heat transfer. Liquid mixtures whose evaporation and wetting properties may differ significantly from those of pure liquids are particularly interesting. Concentration gradients may occur in these binary droplets. The challenge is to measure concentration gradients without affecting the evaporation process. Here, spectroscopic methods with spatial resolution can discriminate between the components of a liquid mixture. We show that confocal Raman microscopy and spatially resolved NMR spectroscopy can be used as complementary methods to measure concentration gradients in evaporating 1-butanol/1-hexanol droplets on a hydrophobic surface. Deuterating one of the liquids allows analysis of the local composition through the comparison of the intensities of the C–H and C–D stretching bands in Raman spectra. Thus, a concentration gradient in the evaporating droplet was established. Spatially resolved NMR spectroscopy revealed the composition at different positions of a droplet evaporating in the NMR tube, an environment in which air exchange is less pronounced. While not being perfectly comparable, both methods—confocal Raman and spatially resolved NMR experiments—show the presence of a vertical concentration gradient as 1-butanol/1-hexanol droplets evaporate.
Collapse