1
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Tabatabaei S, Priyadarsi P, Singh N, Sahafi P, Tay D, Jordan A, Budakian R. Large-enhancement nanoscale dynamic nuclear polarization near a silicon nanowire surface. SCIENCE ADVANCES 2024; 10:eado9059. [PMID: 39167648 PMCID: PMC11338224 DOI: 10.1126/sciadv.ado9059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Dynamic nuclear polarization (DNP) has revolutionized the field of nuclear magnetic resonance spectroscopy, expanding its reach and capabilities to investigate diverse materials, biomolecules, and complex dynamic processes. Bringing high-efficiency DNP to the nanometer scale would open exciting avenues for studying nanoscale nuclear spin ensembles, such as single biomolecules, virus particles, and condensed matter systems. Combining pulsed DNP with nanoscale force-detected magnetic resonance measurements, we demonstrated a 100-fold enhancement in the Boltzmann polarization of proton spins in nanoscale sugar droplets at 6 kelvin and 0.33 tesla. Crucially, this enhancement corresponds to a factor of 200 reduction in the averaging time compared to measurements that rely on the detection of statistical fluctuations in nanoscale nuclear spin ensembles. These results substantially advance the capabilities of force-detected magnetic resonance detection as a practical tool for nanoscale imaging.
Collapse
Affiliation(s)
- Sahand Tabatabaei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Pritam Priyadarsi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Namanish Singh
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Pardis Sahafi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Daniel Tay
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Andrew Jordan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| |
Collapse
|
4
|
Equbal A, Ramanathan C, Han S. Dipolar Order Induced Electron Spin Hyperpolarization. J Phys Chem Lett 2024; 15:5397-5406. [PMID: 38739470 PMCID: PMC11129302 DOI: 10.1021/acs.jpclett.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The structure of coupled electron spin systems is of fundamental interest to many applications, including dynamic nuclear polarization (DNP), enhanced nuclear magnetic resonance (NMR), the generation of electron spin qubits for quantum information science (QIS), and quantitative studies of paramagnetic systems by electron paramagnetic resonance (EPR). However, the characterization of electron spin coupling networks is nontrivial, especially at high magnetic fields. This study focuses on a system containing high concentrations of trityl radicals that give rise to a DNP enhancement profile of 1H NMR characteristic of the presence of electron spin clusters. When this system is subject to selective microwave saturation through pump-probe ELectron DOuble Resonance (ELDOR) experiments, electron spin hyperpolarization is observed. We show that the generation of an out-of-equilibrium longitudinal dipolar order is responsible for the transient hyperpolarization of electron spins. Notably, the coupled electron spin system needs to form an AX-like system (where the difference in the Zeeman interactions of two spins is larger than their coupling interaction) such that selective microwave irradiation can generate signatures of electron spin hyperpolarization. We show that the extent of dipolar order, as manifested in the extent of electron spin hyperpolarization generated, can be altered by tuning the pump or probe pulse length, or the interpulse delay in ELDOR experiments that change the efficiency to generate or readout longitudinal dipolar order. Pump-probe ELDOR with selective saturation is an effective means for characterizing coupled electron spins forming AX-type spin systems that are foundational for DNP and quantum sensing.
Collapse
Affiliation(s)
- Asif Equbal
- Department
of Chemistry, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Center
for Quantum and Topological Systems, New
York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Chandrasekhar Ramanathan
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Songi Han
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Mitin D, Bullinger F, Dobrynin S, Engelmann J, Scheffler K, Kolokolov M, Krumkacheva O, Buckenmaier K, Kirilyuk I, Chubarov A. Contrast Agents Based on Human Serum Albumin and Nitroxides for 1H-MRI and Overhauser-Enhanced MRI. Int J Mol Sci 2024; 25:4041. [PMID: 38612851 PMCID: PMC11012161 DOI: 10.3390/ijms25074041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this study, a macromolecular construct based on human serum albumin and nitroxyl radicals (HSA-NIT) was developed using a new synthesis method that significantly increased the modification to 21 nitroxide residues per protein. This was confirmed by electron paramagnetic resonance (EPR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry. Gel electrophoresis and circular dichroism showed no significant changes in the structure of HSA-NITs, and no oligomers were formed during modification. The cytotoxicity of HSA-NITs was comparable to that of native albumin. HSA-NITs were evaluated as potential "metal-free" organic radical relaxation-based contrast agents for 1H-MRI and as hyperpolarizing contrast agents for OMRI. Relaxivities (longitudinal and transversal relaxation rates r1 and r2) for HSA-NITs were measured at different magnetic field strengths (1.88, 3, 7, and 14 T). Phantoms were used to demonstrate the potential use of HSA-NIT as a T1- and T2-weighted relaxation-based contrast agent at 3 T and 14 T. The efficacy of 1H Overhauser dynamic nuclear polarization (ODNP) in liquids at an ultralow magnetic field (ULF, B0 = 92 ± 0.8 μT) was investigated for HSA-NIT conjugates. The HSA-NITs themselves did not show ODNP enhancement; however, under the proteolysis conditions simulating cancer tissue, HSA-NIT conjugates were cleaved into lower-molecular-weight (MW) protein fragments that activate ODNP capabilities, resulting in a maximum achievable enhancement |Emax| of 40-50 and a radiofrequency power required to achieve half of Emax, P1/2, of 21-27 W. The HSA-NIT with a higher degree of modification released increased the number of spin probes upon biodegradation, which significantly enhanced the Overhauser effect. Thus, HSA-NITs may represent a new class of MRI relaxation-based contrast agents as well as novel cleavable conjugates for use as hyperpolarizing contrast agents (HCAs) in OMRI.
Collapse
Affiliation(s)
- Dmitry Mitin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Friedemann Bullinger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Sergey Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Jörn Engelmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Mikhail Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Igor Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Alexey Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
6
|
Tobar C, Albanese K, Chaklashiya R, Equbal A, Hawker C, Han S. Multi Electron Spin Cluster Enabled Dynamic Nuclear Polarization with Sulfonated BDPA. J Phys Chem Lett 2023; 14:11640-11650. [PMID: 38108283 DOI: 10.1021/acs.jpclett.3c02428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dynamic nuclear polarization (DNP) can amplify the solid-state nuclear magnetic resonance (NMR) signal by several orders of magnitude. The mechanism of DNP utilizing α,γ-bisdiphenylene-β-phenylallyl (BDPA) variants as Polarizing Agents (PA) has been the subject of lively discussions on account of their remarkable DNP efficiency with low demand for microwave power. We propose that electron spin clustering of sulfonated BDPA is responsible for its DNP performance, as revealed by the temperature-dependent shape of the central DNP profile and strong electron-electron (e-e) crosstalk seen by Electron Double Resonance. We demonstrate that a multielectron spin cluster can be modeled with three coupled spins, where electron J (exchange) coupling between one of the e-e pairs matching the NMR Larmor frequency induces the experimentally observed absorptive central DNP profile, and the electron T1e modulated by temperature and magic-angle spinning alters the shape between an absorptive and dispersive feature. Understanding the microscopic origin is key to designing new PAs to harness the microwave-power-efficient DNP effect observed with BDPA variants.
Collapse
Affiliation(s)
- Celeste Tobar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106, California, United States
| | - Kaitlin Albanese
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Raj Chaklashiya
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Asif Equbal
- Department of Chemistry, NYU Abu Dhabi, Saadiyat Campus, PO Box 129188, Abu Dhabi 00000, United Arab Emirates
| | - Craig Hawker
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Songi Han
- Department of Chemistry, Northwestern University, Evanston 60208, Illinois, United States
| |
Collapse
|
7
|
Shu C, Yang Z, Rajca A. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem Rev 2023; 123:11954-12003. [PMID: 37831948 DOI: 10.1021/acs.chemrev.3c00406] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stable radicals and thermally robust high-spin di- and triradicals have emerged as important organic materials due to their promising applications in diverse fields. New fundamental properties, such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, including highly luminescent ones with good photostability. A relation with the singlet-triplet energy gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with energy gaps that are comparable to or greater than a thermal energy at room temperature, are more challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange coupling constant J/k in the high-spin species vs experimental hyperfine coupling constants in the corresponding monoradicals. This relation allows us to identify outliers, which may correspond to radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in which spin density is delocalized over the chiral π-system, have been barely explored, with the sole example of such high-spin diradical possessing alternant π-system with Kekulé resonance form. Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene diradicals.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
8
|
Quan Y, Ouyang Y, Mardini M, Palani RS, Banks D, Kempf J, Wenckebach WT, Griffin RG. Resonant Mixing Dynamic Nuclear Polarization. J Phys Chem Lett 2023; 14:7007-7013. [PMID: 37523253 DOI: 10.1021/acs.jpclett.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We propose a mechanism for dynamic nuclear polarization that is different from the well-known Overhauser effect, solid effect, cross effect, and thermal mixing processes. We term it Resonant Mixing (RM), and we show that it arises from the evolution of the density matrix for a simple electron-nucleus coupled spin pair subject to weak microwave irradiation, the same interactions as the solid effect. However, the SE is optimal when the microwave field is off-resonance, whereas RM is optimal when the microwave field is on-resonance and involves the mixing of states by the microwave field together with the electron-nuclear coupling. Finally, we argue that this mechanism is responsible for the observed dispersive-shaped DNP field profile for trityl samples near the electron paramagnetic resonance center.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ravi Shankar Palani
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Banks
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - James Kempf
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - W Tom Wenckebach
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32310, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Sezer D. Non-perturbative treatment of the solid effect of dynamic nuclear polarization. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:129-152. [PMID: 37904797 PMCID: PMC10583281 DOI: 10.5194/mr-4-129-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/25/2023] [Indexed: 11/01/2023]
Abstract
In the solid effect of dynamic nuclear polarization (DNP), the concerted flips of the electronic and nuclear spins, which are needed for polarization transfer, are induced by the microwaves. Commonly, the effect of the microwaves is modeled by a rate process whose rate constant is determined perturbatively. According to quantum mechanics, however, the coherent microwave excitation leads to Rabi nutation, which corresponds to a rotation rather than a rate process. Here we reconcile the coherent effect of the microwaves with the description by rate equations by focusing only on the steady state of the spin dynamics. We show that the phenomenological rate constants describing the synchronous excitation of the electronic and nuclear spins can be selected such that the description by rate equations yields the same steady state as the exact quantum-mechanical treatment. The resulting non-perturbative rates differ from the classical, perturbative ones and remain valid also at the high microwave powers used in modern-day DNP. Our treatment of the solid effect highlights the role of the coherences in the mechanistic steps of polarization transfer and reveals the importance of the dispersive (i.e., out-of-phase) component of the EPR line. Interestingly, the multiplicative dependence of the DNP enhancement on the dispersive EPR component was intuited in the very first report of the solid effect in liquids . The time-domain description of the solid effect developed here is extendable to liquids, where the dipolar interaction changes randomly in time due to molecular diffusion.
Collapse
Affiliation(s)
- Deniz Sezer
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|