1
|
Habler K, Rexhaj A, Adling-Ehrhardt M, Vogeser M. Understanding isotopes, isomers, and isobars in mass spectrometry. J Mass Spectrom Adv Clin Lab 2024; 33:49-54. [PMID: 39279892 PMCID: PMC11402307 DOI: 10.1016/j.jmsacl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Mass spectrometry (MS) is a versatile analytical tool used in various fields such as biochemistry, pharmacology, omics, and clinical analysis for determining and quantifying compounds based on their molecular mass and structure through the mass-to-charge ratio. While MS offers high specificity and selectivity, it encounters challenges including matrix effects, in-source fragmentation, and other interferences caused by natural isotopic abundance, as well as isomeric and isobaric compounds. These challenges can impede accurate qualitative and quantitative analysis. Visual aids such as graphical illustrations can help elucidate the chemical differences and similarities among isotopes, isomers, and isobaric compounds.
Collapse
Affiliation(s)
- Katharina Habler
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Germany
| | - Arber Rexhaj
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Germany
| | | | - Michael Vogeser
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
2
|
Aderorho R, Chouinard CD. Improved separation of fentanyl isomers using metal cation adducts and high-resolution ion mobility-mass spectrometry. Drug Test Anal 2024; 16:369-379. [PMID: 37491787 DOI: 10.1002/dta.3550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Fentanyl is a potent synthetic opioid that has attracted significant attention due to its illegal production and distribution, resulting in misuse, overdose, and fatalities. Because numerous fentanyl analogs, including structural isomers, with different potency have been discovered in the field, there is a critical need to continue developing analytical methodologies capable of accurate identification in forensic and clinical laboratories. This study aimed to develop a rapid method for detecting and separating fentanyl isomers based on ion mobility-mass spectrometry (IM-MS), where IM separates gas-phase ions based on differences in their size, shape, and charge. Several strategies for improved differentiation were implemented, including using unconventional cation adducts (e.g., alkali and transition metals) and data post-processing by high-resolution demultiplexing. A collection of collision cross section (CCS) values for the various metal ion adducts was gathered, which can be used to improve confidence of identification in future samples. Notable examples, such as [M + Cu]+ and [M + Ag]+ adducts, contributed to significant improvement of resolution between isomers. Furthermore, the addition of high-resolution post-processing provided resolving power of >150, which constitutes a significant increase in comparison with the normal 50-60 obtained with low-resolution drift tube instruments. Collectively, these improved separation strategies allowed for confident detection and subsequent quantitative analysis. The optimized IM-MS method resulted in quantification of fentanyl in human urine with limits of detection and quantification of 13 pg/mL and 40 pg/mL, respectively.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
3
|
Chai Y, Grebe SK, Maus A. Improving LC-MS/MS measurements of steroids with differential mobility spectrometry. J Mass Spectrom Adv Clin Lab 2023; 30:30-37. [PMID: 37859794 PMCID: PMC10582739 DOI: 10.1016/j.jmsacl.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Steroid measurements are important for diagnosis and monitoring of many conditions and treatment regiments; however, due to structural and chemical similarities amongst steroids, these analyses are challenging, even for highly specific techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS). Differential mobility spectrometry (DMS) has the potential to improve these analyses by providing an orthogonal and complementary separation technique. Methods Initially, the potential for DMS to improve signal-to-noise ratio (S/N) and reduce interference was tested by comparing chromatograms acquired with and without DMS when performing measurements of six different steroids. Subsequently, a full clinical validation of cortisol and cortisone in urine was performed with the LC-DMS-MS/MS method. Results and Discussion DMS significantly reduced interferences observed in the chromatograms and boosted S/N by between 1.6 and 13.8 times. Additionally, DMS improved the agreement between quantifier/qualifier fragment ion results for cortisol and cortisone as indicated by the increase in R2 from approximately 0.81 to 0.98. All validation studies met acceptance criteria and we observed exceptional analytical performance in terms of precision, with % CVs less than 8%. Conclusions DMS improved the specificity of the steroid measurements by reducing interferences and improving S/N. The validation studies prove that these benefits did not come at the expense of other aspects of analytical performance. This study indicates that DMS has the potential to benefit not just clinical measurements of challenging analytes, but many clinical LC-MS/MS analyses.
Collapse
Affiliation(s)
- Yubo Chai
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stefan K.G. Grebe
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Anthony Maus
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Neal SP, Hodges WN, Velosa DC, Aderorho R, Lucas SW, Chouinard CD. Improved analysis of derivatized steroid hormone isomers using ion mobility-mass spectrometry (IM-MS). Anal Bioanal Chem 2023; 415:6757-6769. [PMID: 37740752 DOI: 10.1007/s00216-023-04953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Over the last decade, applications of ion mobility-mass spectrometry (IM-MS) have exploded due primarily to the widespread commercialization of robust instrumentation from several vendors. Unfortunately, the modest resolving power of many of these platforms (~40-60) has precluded routine separation of constitutional and stereochemical isomers. While instrumentation advances have pushed resolving power to >150 in some cases, chemical approaches offer an alternative for increasing resolution with existing IM-MS instrumentation. Herein we explore the utility of two reactions, derivatization by Girard's reagents and 1,1-carbonyldiimidazole (CDI), for improving IM separation of steroid hormone isomers. These reactions are fast (≤30 min), simple (requiring only basic lab equipment/expertise), and low-cost. Notably, these reactions are structurally selective in that they target carbonyl and hydroxyl groups, respectively, which are found in all naturally occurring steroids. Many steroid hormone isomers differ only in the number, location, and/or stereochemistry of these functional groups, allowing these reactions to "amplify" subtle structural differences and improve IM resolution. Our results show that resolution was significantly improved amongst CDI-derivatized isomer groups of hydroxyprogesterone (two-peak resolution of Rpp = 1.10 between 21-OHP and 11B-OHP), deoxycortisone (Rpp = 1.47 between 11-DHC and 21-DOC), and desoximetasone (Rpp = 1.98 between desoximetasone and fluocortolone). Moreover, characteristic collision cross section (DTCCSN2) measurements can be used to increase confidence in the identification of these compounds in complex biological mixtures. To demonstrate the feasibility of analyzing the derivatized steroids in complex biological matrixes, the reactions were performed following steroid extraction from urine and yielded similar results. Additionally, we applied a software-based approach (high-resolution demultiplexing) that further improved the resolving power (>150). Overall, our results suggest that targeted derivatization reactions coupled with IM-MS can significantly improve the resolution of challenging isomer groups, allowing for more accurate and efficient analysis of complex mixtures.
Collapse
Affiliation(s)
- Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Walker N Hodges
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | | |
Collapse
|
5
|
Zhao G. Multi-Residue Detection of Eight Glucocorticoids by Nano-Au/Fluticasone Propionate Electrochemical Immunosensor. Molecules 2023; 28:6619. [PMID: 37764395 PMCID: PMC10534488 DOI: 10.3390/molecules28186619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Based on an indirect competitive method, a novel nano-Au/fluticasone propionate electrochemical immunosensor was successfully fabricated by combining the nanoscale effect, superior conductivity of nano-Au, stable Au-S chemical bond as well as strong interaction between glucocorticoid and the receptor, which was used to simultaneously detect eight kinds of glucocorticoids. The modified immunosensors' electrochemical properties were explored by means of a cyclic voltammetry (CV) method and electrochemical impedance spectroscopy (EIS) measurements. Two factors (glucocorticoid receptor concentration, incubation time) were studied in order to obtain the optimal results. The immunosensor presents attractive electrochemical performance with a wide linear range (between 0.1 and 1500 ng⋅mL-1) and low detection limit (between 0.057 and 0.357 ng⋅mL-1), realizing the rapid multi-residue detection of a large class of glucocorticoids. Two glucocorticoids (hydrocortisone, triamcinolone) were detected in actual skincare samples, which obtained satisfactory detection results.
Collapse
Affiliation(s)
- Guozheng Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, College of Food Science, Shanxi Normal University, Taiyuan 030031, China;
- Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, China
| |
Collapse
|
6
|
Wedge A, Hoover M, Pettit-Bacovin T, Aderorho R, Efird E, Chouinard CD. Development of a Rapid, Targeted LC-IM-MS Method for Anabolic Steroids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37390334 DOI: 10.1021/jasms.3c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Anabolic steroids are of high biological interest due to their involvement in human development and disease progression. Additionally, they are banned in sport due to their performance-enhancing characteristics. Analytical challenges associated with their measurement stem from structural heterogeneity, poor ionization efficiency, and low natural abundance. Their importance in a variety of clinically relevant assays has prompted the consideration of integrating ion mobility spectrometry (IMS) into existing LC-MS assays, due primarily to its speed and structure-based separation capability. Herein we have optimized a rapid (2 min) targeted LC-IM-MS method for the detection and quantification of 40 anabolic steroids and their metabolites. First, a steroid-specific calibrant mixture was developed to cover the full range of retention time, mobility, and accurate mass. Importantly, this use of this calibrant mixture provided robust and reproducible measurements based on collision cross section (CCS) with interday reproducibility of <0.5%. Furthermore, the combined separation power of LC coupled to IM provided comprehensive differentiation of isomers/isobars within 6 different isobaric groups. Multiplexed IM acquisition also provided improved limits of detection, which were well below 1 ng/mL in almost all compounds measured. This method was also capable of steroid profiling, providing quantitative ratios (e.g., testosterone/epitestosterone, androsterone/etiocholanolone, etc.). Lastly, phase II steroid metabolites were probed in lieu of hydrolysis to demonstrate the ability to separate those analytes and provide information beyond total steroid concentration. This method has tremendous potential for rapid analysis of steroid profiles in human urine spanning a variety of applications from developmental disorders to doping in sport.
Collapse
Affiliation(s)
- Ashlee Wedge
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Makenna Hoover
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Terra Pettit-Bacovin
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Emmaleigh Efird
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | | |
Collapse
|
7
|
Kemperman RHJ, Chouinard CD, Yost RA. Characterization of Bile Acid Isomers and the Implementation of High-Resolution Demultiplexing with Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37319333 DOI: 10.1021/jasms.3c00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bile acids (BAs) are a complex suite of clinically relevant metabolites that include many isomers. Liquid chromatography coupled to mass spectrometry (LC-MS) is an increasingly popular technique due to its high specificity and sensitivity; nonetheless, acquisition times are generally 10-20 min, and isomers are not always resolved. In this study, the application of ion mobility (IM) spectrometry coupled to MS was investigated to separate, characterize, and measure BAs. A subset of 16 BAs was studied, including three groups of isomers belonging to unconjugated, glycine-conjugated, and taurine-conjugated BA classes. A variety of strategies were explored to increase BA isomer separation such as changing the drift gas, measuring different ionic species (i.e., multimers and cationized species), and enhancing the instrumental resolving power. In general, Ar, N2, and CO2 provided the best peak shape, resolving power (Rp), and separation, especially CO2; He and SF6 were less preferable. Furthermore, measuring dimers versus monomers improved isomer separation due to enhanced gas-phase structural differences. A variety of cation adducts other than sodium were characterized. Mobility arrival times and isomer separation were affected by the choice of adduct, which was shown to be used to target certain BAs. Finally, a novel workflow that involves high-resolution demultiplexing in combination with dipivaloylmethane ion-neutral clusters was implemented to improve Rp dramatically. A maximum Rp increase was observed with lower IM field strengths to obtain longer drift times, increasing Rp from 52 to 187. A combination of these separation enhancement strategies demonstrates great potential for rapid BA analysis.
Collapse
Affiliation(s)
- Robin H J Kemperman
- University of Florida, Department of Chemistry, Gainesville, Florida 32611, USA
| | | | - Richard A Yost
- University of Florida, Department of Chemistry, Gainesville, Florida 32611, USA
| |
Collapse
|
8
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
9
|
Self-Declared and Measured Prevalence of Glucocorticoid Use in Polish Athletes. SEPARATIONS 2023. [DOI: 10.3390/separations10030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Glucocorticoids (GCs) are included in the list of prohibited substances and methods in sport published annually by the World Anti-Doping Agency (WADA). In its 2022 update, the WADA list prohibits all injectable routes of administration of GCs for use during in-competition periods. Previously, GCs were prohibited in-competition when administered by oral, intravenous, intramuscular, or rectal routes, but local injections (in addition to topical applications) were allowed. This study first investigated the prevalence of GC use by athletes in Poland, declared in 2130 doping control forms, and the related 2130 urine samples analysed at the Polish Anti-Doping Laboratory. Second, the validity of the analytical methodology to detect GCs was evaluated with the updated WADA requirement for substance-specific minimum reporting levels and considering the proposed washout periods. Despite the new regulation in place, the use of 30 different GC preparations were declared in a total of 162 occurrences (8% of the tests) with therapeutic purposes. Laboratory analyses resulted in the presence of GCs in 16 occurrences with only two samples with a concentration triggering an adverse analytical finding. Our study allowed us to confirm that the applied methodology for the determination of GCs in urine samples (ultra-high-performance liquid chromatography–tandem mass spectrometry) remains fully valid after the latter regulation change while the challenge to assess the timing and administration route for GCs persists.
Collapse
|
10
|
Song Y, Song Q, Liu W, Li J, Tu P. High-confidence structural identification of metabolites relying on tandem mass spectrometry through isomeric identification: A tutorial. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Advances in MS instrumentation: The present and future of the clinical lab. J Mass Spectrom Adv Clin Lab 2022; 26:21-22. [DOI: 10.1016/j.jmsacl.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|